
Dear Author,

Here are the proofs of your article.

You can submit your corrections online, via e-mail or by fax.

For online submission please insert your corrections in the online correction form. Always indicate the line number to which the
correction refers.

You can also insert your corrections in the proof PDF and email the annotated PDF.

For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin,
not too close to the edge of the page.

Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.

Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are
correctly shown.

Check the questions that may have arisen during copy editing and insert your answers/ corrections.

Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters,
equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.

The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such
details are correct.

Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the
responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.

If we do not receive your corrections within 48 hours, we will send you a reminder.

Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first
publication citable with the DOI. Further changes are, therefore, not possible.

The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL:
http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further
information go to: http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you
return your corrections, please inform us if you would like to have these documents returned.

 

http://www.link.springer.com


Metadata of the article that will be visualized in OnlineFirst

ArticleTitle Fast norm computation in smooth-degree Abelian number fields

Article Sub-Title

Article CopyRight The Author(s)
(This will be the copyright line in the final PDF)

Journal Name Research in Number Theory

Corresponding Author FamilyName Bernstein
Particle
Given Name Daniel J.
Suffix
Division Department of Computer Science
Organization University of Illinois at Chicago
Address Chicago, USA
Division Horst Görtz Institute for IT Security
Organization Ruhr University Bochum
Address Bochum, Germany
Division Research Center for Information Technology Innovation
Organization Academia Sinica
Address Taipei, Taiwan
Phone
Fax
Email djb@cr.yp.to
URL
ORCID

Schedule Received 12 Aug 2022
Revised
Accepted 28 Sep 2022

Abstract This paper presents a fast method to compute algebraic norms of integral elements of smooth-degree cyclotomic fields, and, more generally,
smooth-degree Galois number fields with commutative Galois groups. The typical scenario arising in S-unit searches (for, e.g., class-group
computation) is computing a Θ(nlogn)-bit norm of an element of weight n1/2+o(1) in a degree-n field; this method then uses n(logn)3+o(1) bit
operations. An n(logn)O(1) operation count was already known in two easier special cases: norms from power-of-2 cyclotomic fields via
towers of power-of-2 cyclotomic subfields, and norms from multiquadratic fields via towers of multiquadratic subfields. This paper handles
more general Abelian fields by identifying tower-compatible integral bases supporting fast multiplication; in particular, there is a synergy
between tower-compatible Gauss-period integral bases and a fast-multiplication idea from Rader. As a baseline, this paper also analyzes
various standard norm-computation techniques that apply to arbitrary number fields, concluding that all of these techniques use at least 
n2(logn)2+o(1) bit operations in the same scenario, even with fast subroutines for continued fractions and for complex FFTs. Compared to this
baseline, algorithms dedicated to smooth-degree Abelian fields find each norm n/(logn)1+o(1) times faster, and finish norm computations inside
S-unit searches n2/(logn)1+o(1) times faster.

Mathematics Subject
Classification (separated
by '-')

Primary 11Y40 - 11Y16 - Secondary 68W30 - 11R18

Footnote Information This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the Excellence Strategy of the
German Federal and State Governments—EXC 2092 CASA—390781972 “Cyber Security in the Age of Large-Scale Adversaries”; by the U.S.
National Science Foundation under Grant 1913167; by the Taiwan’s Executive Yuan Data Safety and Talent Cultivation Project (AS-KPQ-
109-DSTCP); and by the Cisco University Research Program. “Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation” (or other funding agencies).
Permanent ID of this document: 6c338bc06ca0c734f22cb48bacc4b65ea666cd81.



un
co

rr
ec

te
d 

pr
oo

f

D. J. Bernstein Res. Number Theory_#####################_
https://doi.org/10.1007/s40993-022-00402-0

RESEARCH

Fast norm computation in smooth-degree
Abelian number fields
Daniel J. Bernstein1,2,3*

*Correspondence:
djb@cr.yp.to
3Horst Görtz Institute for IT
Security, Ruhr University
Bochum, Bochum, Germany
Full list of author information is
available at the end of the article
This work was funded by the
Deutsche
Forschungsgemeinschaft (DFG,
German Research Foundation) as
part of the Excellence Strategy of
the German Federal and State
Governments—EXC 2092
CASA—390781972 “Cyber
Security in the Age of
Large-Scale Adversaries”; by the
U.S. National Science Foundation
under Grant 1913167; by the
Taiwan’s Executive Yuan Data
Safety and Talent Cultivation
Project (AS-KPQ-109-DSTCP); and
by the Cisco University Research
Program. “Any opinions, findings,
and conclusions or
recommendations expressed in
this material are those of the
author(s) and do not necessarily
reflect the views of the National
Science Foundation” (or other
funding agencies). Permanent ID
of this document:
6c338bc06ca0c734f22cb
48bacc4b65ea666cd81

Abstract

This paper presents a fast method to compute algebraic norms of integral elements of
smooth-degree cyclotomic fields, and, more generally, smooth-degree Galois number
fields with commutative Galois groups. The typical scenario arising in S-unit searches
(for, e.g., class-group computation) is computing a�(n log n)-bit norm of an element of
weight n1/2+o(1) in a degree-n field; this method then uses n(log n)3+o(1) bit operations.
An n(log n)O(1) operation count was already known in two easier special cases: norms
from power-of-2 cyclotomic fields via towers of power-of-2 cyclotomic subfields, and
norms from multiquadratic fields via towers of multiquadratic subfields. This paper
handles more general Abelian fields by identifying tower-compatible integral bases
supporting fast multiplication; in particular, there is a synergy between
tower-compatible Gauss-period integral bases and a fast-multiplication idea from
Rader. As a baseline, this paper also analyzes various standard norm-computation
techniques that apply to arbitrary number fields, concluding that all of these
techniques use at least n2(log n)2+o(1) bit operations in the same scenario, even with
fast subroutines for continued fractions and for complex FFTs. Compared to this
baseline, algorithms dedicated to smooth-degree Abelian fields find each norm
n/(log n)1+o(1) times faster, and finish norm computations inside S-unit searches
n2/(log n)1+o(1) times faster.

Mathematics Subject Classification: Primary 11Y40, 11Y16, Secondary 68W30, 11R18

1

1 Introduction2

Consider the element α = 3+ζ 2712048+4ζ 8282048 of the cyclotomic fieldK = Q(ζ2048); here ζm, 13

for any positive integerm, means the complex number exp(2π i/m). Write detKQ α for the 24

determinant of multiplication by α as a Q-linear map from K to K , i.e., for the algebraic5

norm of α from K down to Q. (See Sect. 1.4 regarding notation choices.) The following 36

Sage commands print out detKQ α, while measuring how long the computation takes:7

K.<zeta> = CyclotomicField(2048); alpha = 3+zetaˆ271+4*zetaˆ8288

%time alpha.norm()9

Sage 9.5 (the January 2022 version of Sage [83]) takes 61 milliseconds on one core of a10

3.5GHz Intel Xeon E3-1275 v3 (Haswell) CPU, around 0.21 × 109 CPU cycles.11

123 © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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One has detKQ α = ∏
c∈{1,3,5,...,2047}(3+ζ 271c2048 +4ζ 828c2048 ). The absolute value of the complex12

number 3 + ζ 271c2048 + 4ζ 828c2048 is below 8, and one might guess that it is typically somewhere13

around 4, i.e., that detKQ α has absolute value around 41024 = 22048. Sage computes the14

exact value of detKQ α, an integer 272 . . . 618 ≈ 0.842 · 22048.15

Inside Sage, PARI [76] finds detKQ α as the resultant of two polynomials in Z[x]. The16

first polynomial is the minimal polynomial of ζ2048 over Q, namely x1024 + 1. The second17

polynomial is 3 + x271 + 4x828. One can skip Sage’s number-field machinery and directly18

compute detKQ α as a polynomial resultant:19

ZZx.<x> = ZZ[]20

Phi = xˆ1024+1; g = 3+xˆ271+4*xˆ82821

%time Phi.resultant(g)22

Sage, when asked for a resultant of two polynomials instead of a norm of a number-23

field element, calls FLINT [55] instead of PARI, and now takes 1.12 × 109 cycles. The24

resultant subroutine has a proof=False option allowing randomized algorithms;25

this option doesn’t save time. What does save time is using NTL [87] polynomials instead26

of FLINT polynomials:27

ZZx.<x> = PolynomialRing(ZZ,’x’,implementation=’NTL’)28

Phi = xˆ1024+1; g = 3+xˆ271+4*xˆ82829

%time Phi.resultant(g)30

This takes 0.15 × 109 cycles.31

Why does it take so many cycles to compute a 2048-bit resultant of two input poly-32

nomials that have, in dense format, a few thousand small coefficients? The issue is not33

the number of cycles required per bit for basic arithmetic: for example, Sage takes about34

20,000 cycles to multiply two 2048-bit integers. The issue is that standard fast-continued-35

fraction techniques for computing the resultant of two polynomials in Z[x] have cost36

growing as essentially the product of the number of input bits and the number of output37

bits. The resultant of xn + 1 and a sparse n-coefficient input, with n1/2+o(1) coefficients38

±1, will typically have�(n log n) bits; these resultant algorithms then cost n2(log n)3+o(1).39

For some inputs, the output is much smaller and the algorithms are much faster, but this40

is not the typical case.41

It is not a new observation that one can do much better by exploiting transitivity of42

determinants through a tower of subfields of K . Take F as, e.g., the field Q(ζ1024). Then43

F is a subfield of K : specifically, ζ1024 = ζ 22048, so F is the fixed field of the unique44

automorphism of K that maps ζ2048 to −ζ2048. Hence45

detKF α = (
3 + ζ 2712048 + 4ζ 8282048

) (
3 + (−ζ2048)271 + 4(−ζ2048)828

)

= 9 − ζ 2711024 + 24ζ 4141024 + 16ζ 8281024 = 9 − ζ 2711024 − 16ζ 3161024 + 24ζ 4141024 .
46

One can then compute detKQ α as detFQ detKF α:47

ZZx.<x> = PolynomialRing(ZZ,’x’,implementation=’NTL’)48

g = 3+xˆ271+4*xˆ82849

%time g = ZZx(list(g*g(-x))[::2]) % (xˆ512+1)50

%time (xˆ512+1).resultant(g)51

Here g*g(-x) gives g · g(−x) = detZ[x]
Z[x2] g , a polynomial whose value at ζ2048 is detKF α;52

list(g*g(-x)) gives the list of coefficients of g · g(−x); [::2] extracts every second53

coefficient;ZZx(...)produces the correspondingpolynomial, a polynomialwhose value54
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at ζ1024 is detKF α; and %(xˆ512+1) reduces modulo x512 + 1. This is, up to sign, also55

g.adams\_operator(2)%(xˆ512+1) since deg g > 0, but the “Adams” naming is56

questionable given that this operator on polynomials was already used (for root-finding)57

by Dandelin in [39, page 49] in 1826; see generally [60].58

Sage reports that the evaluation of detKF takes 0.01 × 109 cycles and that the evaluation59

of detFQ takes 0.09× 109 cycles. One can save more time by recursively decomposing detFQ60

via transitivity, and exploiting the special form of the power-of-2 cyclotomic polynomials61

to convert each modular reduction into subtraction:62

ZZx.<x> = PolynomialRing(ZZ,’x’,implementation=’NTL’)63

g = 3+xˆ271+4*xˆ82864

%time for d in 512,256,128,64,32,16,8,4,2,1: \65

L = list(g*g(-x))[::2]; \66

g = ZZx(L[:d])-ZZx(L[d:])67

This reduces the total time to just 0.011 × 109 cycles. Appendix B removes more over-68

head and takes just 0.0012 × 109 cycles. The important point to keep in mind is that the69

typical algorithm cost has dropped from n2+o(1) to n1+o(1).70

1.1 Contributions of this paper71

As a baseline, Sect. 3 analyzes the costs of various standard detKQ techniques that work72

for arbitrary number fields. The special case of power-of-2 cyclotomics, as in the Q(ζ2048)73

example above, suffices for seeing that these techniques are not competitive asymptoti-74

cally, so Sect. 3 focuses on this case. The main conclusion of Sect. 3 is that, in the typical75

case of �(n log n)-bit outputs for field degree n (see Sect. 2 for why this is typical), all of76

these techniques use at least n2(log n)2+o(1) bit operations.77

Section 4 explores the question of which number fields allow lower-cost evaluation of78

detKQ via transitivity, in particular reducing n2(log n)2+o(1) to n(log n)3+o(1). It is natural to79

ask for the field degree to be smooth—a product of small primes—and for the field to have80

a correspondingly long tower of subfields. The challenge addressed in Sect. 4 is to build81

algorithms tomultiply efficiently on tower-compatible bases for these subfields. Note that82

this is easy for power-of-2 cyclotomics: standard polynomial bases are compatible with83

the tower Q ⊂ Q(ζ4) ⊂ Q(ζ8) ⊂ · · · and are well known to allow fast multiplication.84

Section 5 analyzes applications to one of the standard techniques for computing class85

groups, unit groups, etc. The technique is to enumerate small elements of the ring of86

integers, andfilter those elements to seewhichones areS-units,whereS is the set of infinite87

places and small finite places. This filtering is typically handled by an Eratosthenes-type88

sieving procedure when degrees are small and discriminants are large, as in the number-89

field sieve for integer factorization; but if degrees are relatively large, as in the cyclotomic90

case, then it seemsbest to compute detKQ α for each elementα and then checkwhich detKQ α91

factor as desired. The smooth-degree Abelian case uses fewer detKQ α computations (since92

one can search for S-units modulo automorphisms of the field) and speeds up each detKQ α93

computation, overall speeding up the sequence of detKQ α computations by a factor close94

to n2. The Abelian case also speeds up the factorizations.95

1.2 Previous work on speedups using transitivity96

The fact that transitivity of determinants saves effort is standard textbook material. For97

example, a standard exercise starts with the degree-4 fieldK = Q(ζ5) and the real subfield98
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F = R ∩ K = Q(
√
5), and computes detKQ α as detFQ detKF α. But such small examples give99

little information regarding how much effort is saved in larger examples.100

For any power-of-2 cyclotomic field K , Gentry and Halevi [51, Section 4] used a tower101

of power-of-2 cyclotomic subfields to compute detKQ α in essentially linear time, as in the102

Q(ζ2048) example given above.Bauch,Bernstein, deValence, Lange, andvanVredendaal [9,103

Section 3.4], for the case of multiquadratic fields K = Q(
√
d1,

√
d2, . . . ,

√
dt ), computed104

detKQ α in essentially linear time using a tower of multiquadratic subfields.105

Gentry andHalevi also computed trK
Q
(1/α) for α �= 0. One can easily obtain the inverse-106

trace algorithm in [51] by applying the following simple general-purpose conversion, an107

example of automatic differentiation, to the detKQ algorithm in [51]: for any K , take any108

algebraic algorithm for α �→ detKQ α, tensor with the jet plane Q[ε]/ε2 over Q, and apply109

the resulting algorithm to α + ε to obtain110

detK [ε]/ε2
Q[ε]/ε2 (α + ε) = (detKQ α)(1 + ε trKQ(1/α)).111

This conversion loses a small constant factor in performance. This is not how the inverse-112

trace algorithm in [51] is described, but one can, with some effort, check that this is what113

the algorithm does.114

1.3 Fast-multiplication subroutines115

There is a huge literature on FFT-based algorithms to multiply two elements of R[x]/ϕ,116

for any monic ϕ ∈ R[x] with deg ϕ = n, using n(log n)1+o(1) operations on coefficients in117

R. See generally [16].118

These algorithms are faster by a constant factor when ϕ is “FFT-friendly”. This con-119

stant factor is not visible in the n(log n)1+o(1) asymptotics, but it becomes visible if one120

applies the same idea recursively to multiply in a ring presented as a tower such as121

(· · · ((R[x1]/ϕ1)[x2]/ϕ2) · · ·)[xt ]/ϕt . In a “multidimensional FFT”, each ϕj is FFT-friendly122

(e.g., a size-n Hadamard–Walsh transform has ϕj = x2j − 1 and n = 2t ), and the cost123

is �(n log n) for n coefficients; see Sect. 4.12.1. For general ϕj , a constant-factor loss c at124

each level of the tower turns into a loss ct for t levels, increasing costs by a factor n�(1) if125

t ∈ �(log n).126

As van der Hoeven and Lecerf pointed out in [59], if one modifies a tower to force127

t ∈ o(log n), by replacing any constant-degree steps with superconstant-degree steps,128

then the ct overhead factor mentioned above is no(1), and one obtains total cost n1+o(1)
129

for multiplication. There is some tension between the idea of reducing t and the idea of130

exploiting towers to save time in detKQ computation; but note that if there are t levels, each131

of relative degree nO(1/t), then there are nO(1/t) multiplications at each level, so reaching132

total cost n1+o(1) for detKQ simply requires t to be superconstant. A closer look shows that133

one can do better—as an analogy, FFTs are asymptotically better than Toom’s method for134

univariate multiplication, even though both take essentially linear time—but one should135

not think that short towers are useless.136

Formultiquadratic fieldsQ(
√
d1,

√
d2, . . . ,

√
dt ), themultiplication algorithm in [9, Sec-137

tion 3.3] selects enough moduli p for which all of d1, d2, . . . , dt are squares modulo p, and138

then uses Hadamard–Walsh transforms twisted by
√
d1,

√
d2, . . . ,

√
dt modulo p.139

One can, with effort, extract from a paper by Arita and Handa [6, Sections 3.3, 3.4,140

and 4.3] an essentially-linear-time algorithm to multiply on Gauss-period bases of prime-141

conductor Abelian fields, i.e., subfields of Q(ζp) (beyond Q) where p is prime. This algo-142
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rithm can be viewed as a simple “folding” of an FFT algorithm that Rader introduced143

in [82], an algorithm having a different flavor from conventional FFTs; see Sect. 4.8. Sec-144

tion 4.12handlesmore generalAbelianfields, unifying the idea of foldingwith an extension145

of Winograd’s generalization [96] of Rader’s idea.146

1.4 Notation and terminology147

Wessel [95] and independently Argand [3] introduced a geometric description of each148

complex number a + bi as a line in the plane from (0, 0) to (a, b). Wessel [95, page 469]149

referred to (a2 + b2)1/2 as the length of the line (“Længde” in Danish). Argand [4, page150

208] referred to (a2 + b2)1/2 as the absolute size (“grandeur absolue” in French) and the151

modulus (“module” in French) of a + bi. Gauss [49, page 103] referred to a2 + b2 as the152

norm (“norma” in Latin) of a + bi for a, b ∈ Z. (One meaning of “norma” in Latin is a153

carpenter’s square used to measure right angles.)154

Subsequent literature reused the “norm” terminology for generalizations (1) to algebraic155

norms, typically called just “norms”, but also (2) to 2-norms such as the �2 norm and the156

L2 norm, and beyond that to further generalizations of the concept of length, also typically157

called just “norms”. Algebraic norms and 2-norms coincide for a+bi, aside from quibbles158

about a2 + b2 vs. (a2 + b2)1/2, but differ in general.159

This wouldn’t be problematic if there were a clear dividing line between papers in160

number theory saying “norm” for algebraic norms and papers in analysis saying “norm”161

for those other things. The reality, however, is that those other things appear constantly162

in number theory (and not just in analytic number theory): consider lattices, for example,163

orWeil height. Perhaps it’s time for number theorists to consider ending the conflict: put164

the “norm” word down gently and back away.165

What, then, should algebraic norms be called? Nobody actually says “algebraic norms”166

or “field norms” except for disambiguation. Meanwhile there is a well known, standard,167

unambiguous name for a more general concept: “determinant”. We refer to the trace168

of multiplication by α as the trace of α; shouldn’t we also refer to the determinant of169

multiplication by α as the determinant of α?170

There are parameters, of course: in the case of fields, there’s an input field and an output171

field, with the input field having finite degree over the output field. We all know what the172

trace map is from the input field to the output field; it’s not a big leap to talk about the173

determinant map from the input field to the output field.174

As for notation, Dirichlet [40, page 295] wrote N (a + bi) for a2 + b2; there were no175

parameters in theN map. Subsequent literature sometimes usesNF for a norm to F (as in,176

e.g., [58, page 204] and [57, page 125]) and sometimes uses NF for a norm from F (as in,177

e.g., [30]). The extra effort of writingNL/K resolves the ambiguity (if L andK aren’t objects178

with a quotient that could be reasonably plugged into the NF notation), but anyone who179

has taken a course in differential geometry, the study of superscripts and subscripts, will180

see that there’s a better place to put the input field. This is not a new idea: see, e.g., [69,181

page 16] and [41].182

As a separate matter, the short name “N ” is fine for local notation (notation where183

brevity is prioritized over broad readability), but it doesn’t work well as global notation184

given all the other common uses of “N ”. Again determinants come to the rescue: the185

global notations “det” and “tr” are well established. Adding a K subscript for K -linear186
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maps, and an L superscript for taking inputs in L as linear maps from L to L, gives this187

paper’s notation detLK α.188

This paper does not attempt to avoid the following common abbreviations: “Rings” are189

commutative rings. If R is a ring and S is a set then RS is the ring of S-indexed vectors with190

entries in R and coordinatewise operations. If R is a ring and H is a finite commutative191

group then R[H ] is the group ring ofH over R, the ring ofH-indexed vectors with entries192

in R and convolution as multiplication.193

If R is a ring and m is a positive integer then a primitive mth root of 1 in R means an194

element ζ ∈ R such that (1) ζm = 1; (2) ζm/p −1 is invertible in R for all primes p dividing195

m; and (3) m is invertible in R (which one can deduce from the other conditions). The196

notation ζm is specifically the complex number exp(2π i/m).197

If B is a basis (of, e.g., a vector space) then the set of entries in B is called a “basis set”;198

this is not to be confused with B itself, which is a sequence.199

2 Sizes200

Consider all weight-w elements α = α0 + α1ζm + · · · + αn−1ζ n−1
m of the ring of integers201

R = Z[ζm] of the power-of-2 cyclotomic field K = Q(ζm). Here n = m/2, and “weight w”202

means 2-norm w1/2, i.e.,
∑

j α
2
j = w. This section analyzes the distribution of sizes of the203

integers |detKQ α|.204

These sizes illustrate the detKQ α sizes of interest in Sects. 3 and 4; those sections include205

analyses of the performance of various detKQ algorithms, and the analyses depend on the206

number of bits in detKQ α. The distribution considered in this section arises naturally in207

the standard S-unit search in Sect. 5, which enumerates small-weight elements α ∈ R208

and checks whether detKQ α factors into small primes; presumably detKQ α is more likely to209

factor appropriately if it is smaller.210

One can also ask about the distribution of detKQ α for other cyclotomic fields (and other211

Abelian fields), but the power-of-2 case suffices as an example of what to expect. I haven’t212

found literature directly on point. There are analyses of the distribution of detKQ α inside213

the number-field sieve (see, e.g., [11, eprint version, Section 5.1; journal version, Section214

2.2]), but NFS considers fields of relatively low degree compared to the discriminant. The215

analysis below is conceptually similar to [9, Section 8.1], which heuristically analyzes the216

coefficients of a Dirichlet log vector of a small element of a real multiquadratic field K on217

a unit basis obtained from fundamental units of quadratic subfields; but the details here218

are more complex than in [9], since the embeddings K → C here are not embeddings219

K → R.220

2.1 Notation221

Throughout this section, n ∈ {2, 4, 8, 16, . . .};m = 2n; w is a positive integer; K = Q(ζm);222

and R = Z[ζm]. For each odd integer c, the function σc : K → C is the unique ring223

morphism taking ζm to ζ cm.224

2.2 Upper bounds225

One has |ζm| = 1, so |α| ≤ ∑
j
∣
∣αj

∣
∣ ≤ ∑

j α
2
j = w. (For w > n, one can do better by226

replacing the inequality
∑

j
∣
∣αj

∣
∣ ≤ w with Cauchy’s inequality

∑
j
∣
∣αj

∣
∣ ≤ n1/2w1/2; but the227
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case of interest in Sect. 5 is thatw is asymptotically bounded by n1/2+o(1).) More generally,228
∣
∣ζ cm

∣
∣ = 1, so

∣
∣σc(α)

∣
∣ ≤ w. Hence |detKQ α| = ∏

c∈{1,3,5,...,m−1}
∣
∣σc(α)

∣
∣ ≤ wn.229

2.3 The circular approximation to the distribution230

If w = 1 then the above upper bound is achieved, but for larger w one expects σc(α) =231
∑

j αjζ
cj
m to have summands αjζ

cj
m pointing in different directions in C, usually with sum232

considerably smaller than the upper bound.233

Define the circular approximation to the distribution of log |detKQ α| as a normal dis-234

tribution with mean n(logw − γ )/2 ≈ n(logw)/2 − 0.28860783245n, where γ is Euler’s235

constant, and variance nπ2/24 ≈ 0.411233516712n. Notice that thismean is under half of236

the upper bound n logw from Sect. 2.2, although the ratio converges up to 1/2 asw → ∞.237

The following paragraphs explain how the circular approximation arises from a heuristic238

analysis of the size of log |detKQ α|.239

Thefirst step is tomodel eachσc(α) as
∑

j αj exp 2π iρc,j where eachρc,j is an independent240

uniform random element of R/Z. The distribution of
∑

j αj exp 2π iρc,j is invariant under241

rotation; the basic strategy here is to recover this distribution from its real part.242

To analyze the real part of
∑

j αj exp 2π iρc,j , note that the variance of cos 2πρ for243

uniform random ρ ∈ R/Z is
∫ 1
0 (cos 2πρ)

2 dρ = 1/2. The variance of
∑

j αj cos 2πρc,j is244
∑

j α
2
j /2 = w/2 since, by independence, the summands are uncorrelated.245

Now apply the heuristic that sums are normally distributed to conclude that246
∑

j αj exp 2π iρc,j has a complex normal distribution with mean 0 and variance v for some247

v. By definition of the complex normal distribution, the real and imaginary parts are248

independent normal random variables with variance v/2, so v = w.249

If N is a complex normal random variable with mean 0 and variance 1 then log |N | has250

mean−γ /2 ≈ −0.28860783245 and varianceπ2/24 ≈ 0.411233516712. IfN is a complex251

normal random variable with mean 0 and variance w then log |N | has mean (logw− γ )/2252

and variance π2/24. If N1, . . . , Nn are n uncorrelated complex normal random variables253

with mean 0 and variance w then log |N1 · · ·Nn| has mean n(logw − γ )/2 and variance254

nπ2/24. Finally, the sums-are-normally-distributed heuristic says that log |N1 · · ·Nn| is255

normally distributed.256

2.4 Objections to the heuristics257

As m increases, the powers ζ cm for uniform random c ∈ {1, 3, . . . , m − 1} approach a258

uniform distribution on the unit circle in the following sense: for each arc A of the circle,259

limm→∞ Pr[ζ cm ∈ A] is the fraction of the circle contained in A. The same argument260

applies to ζ cjm for any odd j. One can object, however, that this argument breaks down as261

more and more powers of 2 appear in j: as an extreme case, ζ cjm is always 1 for j = 0. If262

w is small then there is a noticeable chance that α ∈ F for a proper subfield F ⊂ K , and263

then detKQ α = (detFQ α)degF K , with distribution determined by the distribution of detFQ α.264

(For the application to recognizing S-units, one can save time in these cases by simply265

computing detFQ α and checking its factorization.)266

Even forodd j, one canobject tomodeling ζ cjm aspointing in independentdirections as the267

pair (c, j) varies. For example, if j′ = j+m/4, then the ratio ζ cj
′

m /ζ
cj
m = ζ

c(j′−j)
m = ic is limited268

to the set {i,−i}. Ifα ∈ ζmF for a proper subfieldF ⊂ K then detKQ α = (detFQ(α/ζm))degF K ,269

again with distribution determined by the detFQ output distribution.270
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Furthermore, even with the uniform random directions in
∑

j αj exp 2π iρc,j , one can271

object to the heuristic of treating this sum as having a normal distribution—especially272

when w is small, since there are at most w nonzero summands. One can similarly273

object to treating log |N1 · · ·Nn| as having a normal distribution. The sums-are-normally-274

distributed heuristic is only a crude approximation to the central-limit theorem.275

One could, with more work, remove the sums-are-normally-distributed heuristic in276

favor of the following computations:277

• Compute the distribution of
∑

j αj cos 2πρc,j by convolving scaled cosine distribu-278

tions. A complication here is that one needs to combinatorially enumerate possibili-279

ties for #
{
j :

∣
∣αj

∣
∣ = 1

}
, #

{
j :

∣
∣αj

∣
∣ = 2

}
, etc.; but, for large n and relatively small w, the280

probabilities are dominated by the first few possibilities, those where
∣
∣αj

∣
∣ is rarely281

above 1.282

• Recover the rotationally invariant distribution of
∑

j αj exp 2π iρc,j from the distribu-283

tion of
∑

j αj cos 2πρc,j . The point is that any rotationally invariant random variable284

can be written in polar coordinates as r exp 2π iτ where τ is a uniform random ele-285

ment of R/Z independent of r; so take the distribution of the real part r cos 2πτ ,286

compute theMellin transform of the density function, divide by theMellin transform287

of the density function of cos 2πτ , and compute an inverseMellin transform to obtain288

the density function of r. (As noted by Epstein [43], multiplying independent random289

variables corresponds to multiplying Mellin transforms of density functions.)290

• Compute the distribution of log |N1 · · ·Nn| as a convolution of n copies of the r291

distribution.292

But this still would not handle the actual directions of ζ cjm .293

One can also object that the circular approximation to log |detKQ α| cannot be exactly294

correct: for each (n, w), the distribution of log |detKQ α| is discrete, while a normal distribu-295

tion is continuous; also, log |detKQ α| is bounded between 0 and n logw, whereas a normal296

distribution is unbounded.297

2.5 Numerical evidence298

Table 1 presents, for various choices of (m,w), themean and variance of log |detKQ α| across299

two sets of 65536 experiments. The set where “double” is “yes” chooses α uniformly at300

random from weight-w elements where |α0| = 2 and
∣
∣αj

∣
∣ ∈ {−1, 0, 1} for all other j. The301

set where “double” is “no” instead takes weight-w elements where
∣
∣αj

∣
∣ ∈ {−1, 0, 1} for all302

j.303

These experiments were carried out with the Sage script shown in Fig. 1. The script uses304

deterministic seeds for reproducibility. The multicore.py used in the script is from305

[1]. The script also checks the integrals that account for the appearance of γ /2 and π2/24306

in this section.307

Table 1 suggests that the actual mean divided by n is always larger than the circular308

approximation (logw − γ )/2, with a gap of roughly 1/4m + 1/8w for the non-double309

cases, converging down to 0 as m and w jointly increase. The variance divided by n is310

consistently below the circular approximation π2/24, indicating an anti-correlation not311

captured by the approximation.312
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Table 1 Mean and variance of log |detKQ α| for 65,536 random
choices of α in each line

m w Double Mean/n Circular Variance/n Circular

16 8 No 0.784449649 0.751112938 0.250840752 0.411233517

32 8 No 0.775048231 0.751112938 0.297784952 0.411233517

64 8 No 0.771626119 0.751112938 0.300073045 0.411233517

128 8 No 0.769201091 0.751112938 0.297076268 0.411233517

256 8 No 0.767971656 0.751112938 0.302569974 0.411233517

512 8 No 0.767479526 0.751112938 0.304084689 0.411233517

1024 8 No 0.767090049 0.751112938 0.303938674 0.411233517

16 8 Yes 0.818907856 0.751112938 0.225903248 0.411233517

32 8 Yes 0.812924644 0.751112938 0.230691245 0.411233517

64 8 Yes 0.806721757 0.751112938 0.237712502 0.411233517

128 8 Yes 0.804556061 0.751112938 0.248258970 0.411233517

256 8 Yes 0.803026844 0.751112938 0.253884971 0.411233517

512 8 Yes 0.802299755 0.751112938 0.254374189 0.411233517

1024 8 Yes 0.801913665 0.751112938 0.255755664 0.411233517

32 16 No 1.114195770 1.097686529 0.334337997 0.411233517

64 16 No 1.109688552 1.097686529 0.311985149 0.411233517

128 16 No 1.107739880 1.097686529 0.311517559 0.411233517

256 16 No 1.106948700 1.097686529 0.306271284 0.411233517

512 16 No 1.105902631 1.097686529 0.307222592 0.411233517

1024 16 No 1.105780026 1.097686529 0.309983682 0.411233517

32 16 Yes 1.120215430 1.097686529 0.311499371 0.411233517

64 16 Yes 1.116518517 1.097686529 0.301666920 0.411233517

128 16 Yes 1.114480430 1.097686529 0.296678360 0.411233517

256 16 Yes 1.113406893 1.097686529 0.295366668 0.411233517

512 16 Yes 1.113021383 1.097686529 0.295927515 0.411233517

1024 16 Yes 1.112847196 1.097686529 0.293394668 0.411233517

64 32 No 1.452868312 1.444260119 0.321582083 0.411233517

128 32 No 1.450717062 1.444260119 0.317665867 0.411233517

256 32 No 1.449325700 1.444260119 0.313848217 0.411233517

512 32 No 1.448456593 1.444260119 0.316434954 0.411233517

1024 32 No 1.448386058 1.444260119 0.317395974 0.411233517

64 32 Yes 1.453645761 1.444260119 0.318097521 0.411233517

128 32 Yes 1.451760998 1.444260119 0.314215624 0.411233517

256 32 Yes 1.450895244 1.444260119 0.311772454 0.411233517

512 32 Yes 1.450557535 1.444260119 0.310832695 0.411233517

1024 32 Yes 1.450065121 1.444260119 0.311119663 0.411233517

128 64 No 1.794740422 1.790833709 0.319886453 0.411233517

256 64 No 1.794126237 1.790833709 0.321972595 0.411233517

512 64 No 1.793239181 1.790833709 0.319304636 0.411233517

1024 64 No 1.792934800 1.790833709 0.319631699 0.411233517

128 64 Yes 1.794696805 1.790833709 0.320421343 0.411233517

256 64 Yes 1.794007734 1.790833709 0.318422104 0.411233517

512 64 Yes 1.793524077 1.790833709 0.317942481 0.411233517

1024 64 Yes 1.793224334 1.790833709 0.318389943 0.411233517

See text for details
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Fig. 1 Sage script for experiments used in Table 1
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Fig. 2 Rows, top to bottom:m is 64, 128, 256, 512, 1024. Columns, left to right: w is 8, 16, 32, 64. Blue curve in
each graph: sorted values of log |detKQ α| for 65536 random choices of α. Black curve: circular approximation.
Vertical scale: circular ±4σ

Figure 2 plots the distribution (as a transposed cdf) of log |detKQ α| observed in the same313

non-double experiments (blue curve), and, for comparison, plots the circular approx-314

imation (black curve). Both curves are on a vertical scale chosen so that the circular
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approximation runs from 4 standard deviations below the mean to 4 standard deviations315

above themean, so the circular approximation always has the same visual shape; note that316

this scale covers an interval of length only 8
√
nπ2/24 within the interval [0, n logw].317
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3 Quadratic techniques318

This section reviews various standard algorithms that, for arbitrary number fields K ,319

evaluate α �→ detKQ α. This section analyzes the cost of these algorithms applied to power-320

of-2 cyclotomicsK = Q(ζm), specifically for the scenariomotivated in Sect. 2: namely, α is321

a nonzero element of Z[ζm] of weight n1/2+o(1) where n = m/2, and detKQ α has�(n log n)322

bits.323

In short, the modular continued-fraction approach costs n2(log n)3+o(1) bit operations,324

although there are occasional inputs α where a factor log n disappears because of a short325

remainder sequence. The complex-embeddings approach costs n2(log n)2+o(1) bit opera-326

tions.327

3.1 Why resultant computation is so slow, part 1: big integers328

Recall that the Euclid–Stevin algorithm to compute polynomial gcd repeatedly replaces329

(f, g) with (g, f mod g) as long as g �= 0. Tracking degrees and leading coefficients of the330

remainders f, g, f mod g, . . . reveals the resultant. The point here is that331

resultant(f, g) = (−1)(deg f ) deg g (leadcoeff g)deg f −deg(f mod g) resultant(g, f mod g)332

if g �= 0 and f mod g �= 0. There are two base cases: one has resultant(f, g) = gdeg f if333

deg g = 0, and one has resultant(f, g) = 0 if deg g > 0 and f mod g = 0.334

If deg f = n > deg g then the remainder sequence f, g, f mod g, . . . inside the Euclid–335

Stevin algorithm has O(n2) coefficients and the quotient sequence
⌊
f /g

⌋
, . . . has O(n)336

coefficients. One can compute the quotient sequence in time at most n(log n)2+o(1); see,337

e.g., [16, Sections 21–22]. Given n and the quotient sequence, one can compute the338

sequence of remainder degrees, the sequence of remainder leading coefficients, and the339

resultant. The total time is at most n(log n)2+o(1).340

However, onemust be careful with the concept of “time” used in the previous paragraph.341

This is actually a count of operations in the base field: operations in Q, if the goal is to342

compute a resultant of polynomials with coefficients in Q.343

If one takes f = x1024 + 1 and g = 4x828 + x271 + 3 then there are 211 Euclid–Stevin344

quotients. The 100th quotient is a polynomial whose coefficients have more than 100,000345

bits in each numerator and denominator. The final quotient is a linear polynomial whose346

coefficients have more than 400,000 bits in each numerator and denominator. The cost of347

computing these quotients is drivenmuchmore by the number of bits than by the number348

of coefficients.349

Collins [36] showed that simply rescaling the Euclid–Stevin remainders produces poly-350

nomials with much smaller coefficient bounds. These polynomials are called “subresul-351

tants”: their coefficients are determinants of various portions of Sylvester’s resultant352

matrix. The determinant description shows that the subresultants are in Z[x] when353

f, g ∈ Z[x]. The bounds in [36] on the coefficients of subresultants come from apply-354

ing Hadamard’s determinant inequality to bounds on the coefficients of f and g .355

One still cannot escape some growth of coefficients. For example, recall that the resultant356

of f = x1024 + 1 and g = 4x828 + x271 + 3 has 2048 bits. This growth is not something357

that suddenly appears at the last moment in the subresultant algorithm: most algorithm358

steps are, for almost all inputs, working with large integers.359

A subsequent paper by Collins [37] suggested a modular approach to computing360

resultant(f, g) given f, g ∈ Z[x]. If one assumes schoolbook arithmetic then the modu-361
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lar approach gives better cost bounds than the subresultant approach; this comparison362

appears in, e.g., [86, page 449, top paragraph]. Perhaps fast arithmetic would narrow the363

gap, but evaluating this would require developing a variant of fast-continued-fraction364

algorithms that controls coefficient sizes, and the literature does not give any reason to365

think that this effort would end up with a faster algorithm than the modular approach. So366

let’s look at the performance of the modular approach.367

3.2 Why resultant computation is so slow, part 2: manymoduli368

The modular approach reconstructs resultant(f, g) from the image of resultant(f, g) in Fp369

for enough primes p. This image is the same as the resultant of the images of f, g in Fp[x],370

as long as one avoids “bad” primes p, meaning primes that divide the leading coefficients371

of f and g .372

Howdoes onefigure out howmanyprimes are enough?One answer is to useHadamard’s373

inequality to quickly bound the resultant. Another answer, suggested by Monagan [71], is374

to guess that a few primes suffice, then more primes, and so on, stopping when the output375

is sufficiently stable; this fails with negligible probability if there is enough randomness in376

the primes. The Sage resultant documentation says that proof=False “may use a377

randomized strategy that errors with probability no more than 2−80”.378

In the scenario studied in this section, resultant(f, g) has�(n log n) bits. One can simply379

choose primes having enough bits for the explicit upper bounds from Sect. 2.2, although380

the analysis of Sect. 2 suggests that one can usually save a factor above 2 by tuning381

the number of primes appropriately. Either way,
∏

p p has �(n log n) bits. The following382

analysis concludes that the modular approach then costs n2(log n)3+o(1), provided that383

one takes each log log p in (log n)o(1).384

Note first that one can take each log log p in (log n)o(1). For example, choose a parameter385

y, and take all odd primes p ≤ y. By the prime-number theorem,
∏

p≤y p reaches the386

desired�(n log n) bits for a suitable choice of y ∈ �(n log n). One has to skip bad primes,387

but one can compensate by multiplying 1 + ∣
∣leadcoeff fg

∣
∣ into the target for

∏
p≤y p; the388

limited coefficient size for f and g implies that the target still has �(n log n) bits. Now389

each p ∈ O(n log n), implying log log p ∈ (log n)o(1). There is considerable slack in this390

argument: one can take much larger p and still have log log p ∈ (log n)o(1).391

Each continued-fraction computation inFp[x] involves atmostn(log n)2+o(1) operations392

in Fp (including initial reduction of f and g modulo p; f and g have small coefficients,393

so one does not need to batch this reduction across p). The cost of each operation in394

Fp is at most (log p)(log log p)1+o(1), i.e., (log p)(log n)o(1), and summing across all p gives395

n(log n)1+o(1) since
∑

p log p ∈ �(n log n). The total cost is thus at most n2(log n)3+o(1).396

Could the cost actually be lower than this? Strassen [92] pointed out that one log n397

factor in the cost of continued-fraction computation actually arises as the entropy of the398

list of quotient degrees in the Euclid–Stevin algorithm. The case of sparse f and sparse399

g should not be confused with the “normal” case of all quotient degrees 1 (for example,400

if f = x1024 + 1 and g = x999 + x + 1 then there are just 28 divisions), but experiments401

suggest that the entropy is usually�(log n) once g has at least 3 terms.402
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3.3 Complex embeddings403

Another way to compute detKQ α for any degree-n number field K and any α ∈ K is as404
∏
σ σ (α), where σ runs through all ring morphisms K → C. If each complex number405

σ (α) is represented as a floating-point number with �(n log n) bits of precision then the406

product
∏
σ σ (α) also has �(n log n) bits of precision—the n − 1 multiplications lose, in407

total, just�(log n) bits of precision—and if the� constant is adjusted appropriately then408

this is enough precision to recover the integer detKQ α.409

Belabas [10, Section 5.2] recommended using complex embeddings to compute detKQ α410

whenever detKQ α is “relatively small”. The following paragraphs quantify the cost of this411

approach, including the quantification from [10] but also including speedups beyond [10].412

The input α ∈ K is given in what Cohen [34, Section 4.2] calls the “standard represen-413

tation” of K : α is represented as a polynomial g ∈ Z[x] with g(θ ) = α and deg g < degK .414

Here θ is a fixed integral primitive element of K , a root of a monic irreducible polynomial415

f ∈ Z[x]; one can think of the complex-embedding approach as another way of comput-416

ing resultant(f, g). For the power-of-2-cyclotomic case K = Q(ζm), one takes θ = ζm and417

f = xn + 1.418

The first step is to compute σ (α) = g(σ (θ )) for each embedding σ . Belabas views this419

as multiplying the vector of coefficients of g by a precomputed matrix with complex420

entries σ (1), σ (θ ), σ (θ2), . . . ; this is, e.g., the matrix of powers ζ cjm in the case of power-of-2421

cyclotomics, where c runs through {1, 3, . . . , m − 1}. Belabas says that this multiplication422

costsO(n2M(B)) where n is the field degree, B is the number of bits of precision required,423

andM(B) is the cost of B-bit multiplication.424

Three speedups noted in [10] are as follows. First, often one already knows a divisor425

of detKQ α, so one can reduce the required precision accordingly. Second, in multiplying426

complex numbers to obtain detKQ α, one should begin by multiplying the numbers for427

complex-conjugate σ , so that subsequent multiplications are in R; see Sect. 3.4 below.428

Third, low-precision complex computations suffice to determine the approximate value429

of detKQ α, pinpointing how much precision is required for an exact computation—in430

particular, recognizing cases where detKQ α is unusually small. (One can also use this431

to avoid the guesswork described above regarding how many primes are required for a432

modular computation of a resultant.)433

Beware that small detKQ α does not immediately imply that small B suffices: if any partic-434

ular σ (α) is close to 0 then the precision obtained for σ (α) is lower than the initial precision435

of σ (1), σ (θ ), σ (θ2), . . . , so one needs to recompute σ (α) in higher precision. The main436

case of interest in this section is that detKQ α has�(n log n) bits, and then one can see that437

B ∈ �(n log n) suffices as follows: each
∣
∣σ (α)

∣
∣ is nO(1) as in Sect. 2.2, but |detKQ α| is at least438

1 (since α �= 0), so each
∣
∣σ (α)

∣
∣ is at least 1/nO(n). So assume B ∈ �(n log n); the n2M(B)439

from [10] is then n3(log n)2+o(1).440

An asymptotically better way to compute g(σ (θ )) for all σ , not noted in [10], is by441

multipoint evaluation, precomputing a tree of products of x − σ (θ ) and then comput-442

ing a tree of remainders of g modulo those products. Schönhage [84, Section 2] used443

segmentation to reduce multiplication in C[x] to multiplication in Z, obtaining a cost444

bound nB(log nB)1+o(1) for n-coefficient polynomials with B bits in each coefficient and445

all coefficients on the same scale; this cost bound is n2(log n)2+o(1) for B ∈ �(n log n).446

Schönhage [84, Section 4] obtained the same cost bound for division in C[x], assuming447
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that one is dividing by polynomials whose roots in C are O(1). A multipoint-evaluation448

tree has�(log n) layers, for total cost n2(log n)3+o(1).449

A particularly efficient form of remainder tree is an FFT tree—exactly what is needed450

here, since K is assumed to be a power-of-2 cyclotomic. Even simpler than building a451

tree is using Bluestein’s trick from [24,25] to reduce DFT to convolution. Schönhage [84,452

Section 3] used Bluestein’s trick to obtain a cost bound nB(log nB)1+o(1) for a size-n DFT453

with B bits of precision; i.e., cost n2(log n)2+o(1) for B ∈ �(n log n).454

The subsequent n − 1 multiplications of σ (α) values, each to B bits of precision, cost455

nB(log B)1+o(1). If B ∈ �(n log n) then the overall cost is n2(log n)2+o(1). This is, for most456

inputs, asymptotically better than the continued-fraction approach: it avoids an extra457

(log n)1+o(1) factor.458

3.4 Complex conjugation on complex embeddings459

As noted above, inside the complex-embeddings approach, Belabas suggested first multi-460

plying complex-conjugate pairs of complex numbers. In the 3 + ζ 2712048 + 4ζ 8282048 example,461

this means computing the real number (3+ ζ 271c2048 +4ζ 828c2048 )(3+ ζ−271c
2048 +4ζ−828c

2048 ) for each462

pair {c,−c}. Then the subsequent multiplications are multiplications in R, which, for any463

given precision, one expects to be at least twice as fast as multiplications in C.464

A 2× speedup is not visible at the level of detail of the analyses in this section. However,465

it is useful to consider what this speedup is accomplishing algebraically, for comparison466

to the transitivity of determinants exploited in Sect. 4.467

The original problem is to evaluate detQ[x]/f
Q

. Complex embeddings tensor with C over468

Q, reducing the original problem to the problem of evaluating detC[x]/f
C

. The ring C[x]/f469

factors as
∏

c C[x]/(x−ζ cm), and detC[x]/f
C

factors correspondingly as
∏

c det
C[x]/(x−ζ cm)
C

. The470

image inC[x]/(x−ζ cm) of g ∈ C[x]/f is simply g(ζ cm), with determinant g(ζ cm). Multiplying471

these n complex numbers g(ζ cm) produces the desired detC[x]/f
C

g = detQ[x]/f
Q

g .472

The complex-conjugation speedup instead tensors with R over Q. The ring R[x]/f fac-473

tors as a product of ringsR[x]/((x− ζ cm)(x− ζ−c
m )), and detR[x]/f

R
g factors correspondingly474

as a product of detR[x]/((x−ζ cm)(x−ζ−c
m ))

R
g , exactly the real numbers multiplied above.475

These real numbers, in turn, are computed as follows: tensor with C over R, and476

then compute the desired detC[x]/((x−ζ cm)(x−ζ−c
m ))

C
g as the product of detC[x]/(x−ζ cm)

C
g and477

detC[x]/(x−ζ−c
m )

C
g , i.e., the product of g(ζ cm) and g(ζ−c

m ). One can, alternatively, suppress478

the role of C here: reduce g modulo (x − ζ cm)(x − ζ−c
m ) ∈ R[x] and directly compute a479

determinant down to R.480

3.5 Complex conjugation on the original field481

Complex conjugationwas used above as an automorphismofCwith fixed fieldR. A differ-482

ent way to use complex conjugation is to restrict it to the fieldK = Q(ζm). This restriction483

is an easy-to-compute automorphism of K , namely the ring morphism that maps ζm to484

ζ−1
m . The corresponding automorphism x �→ x−1 ofQ[x]/f maps 1, x, x2, x3, . . . , xn−1, the485

usual basis forQ[x]/f as aQ-vector space, to 1,−xn−1,−xn−2,−xn−3, . . . ,−x respectively.486

This automorphism is an easy linear map to apply.487

The field R ∩ K is the fixed field of complex conjugation on K , since R is the fixed field488

of complex conjugation on C. This field R ∩ K has degree n/2 if m ≥ 4, with Q-basis489

1, ζm+ζ−1
m , ζ 2m +ζ−2

m , . . . , ζ n/2−1
m +ζ−(n/2−1)

m . The corresponding subfield F ofQ[x]/f has490
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Q-basis 1, x− xn−1, x2 − xn−2, . . . , xn/2−1 − xn/2+1. This is the subfield of Q[x]/f fixed by491

the automorphism x �→ x−1 of Q[x]/f ; the latter automorphism is also called complex492

conjugation.493

Given g ∈ Q[x]/f , write h for the product of g and its complex conjugate g(x−1). Then494

h = detQ[x]/f
F g ∈ F . One can use transitivity of determinants to compute detQ[x]/f

Q
g as495

detFQ h, which in turn is a product of various values h(ζ cm) = g(ζ cm)g(ζ−c
m ).496

This is the same as the product of g(ζ cm)g(ζ−c
m ) values in Sect. 3.4. The difference is in497

how the values g(ζ cm)g(ζ−c
m ) are computed: as detCR g(ζ cm), or as a real embedding h(ζ cm) of498

h = detQ[x]/f
F g .499

Beware that subfields of general number fields do not capture the full power of multi-500

plying complex conjugates. For example, the field Q( 3√2) is isomorphic to Q[x]/(x3 − 2)501

and has no subfields other than Q and itself; but tensoring with C produces C[x]/(x3 −2),502

which has two complex-conjugate factors. Conversely, multiplying complex conjugates503

does not capture the full power of subfields; see Sect. 4.504

3.6 More morphisms505

A common theme in computational number theory is avoiding the hassle of Archimedean506

precision tracking by switching to thep-adics for a suitable primep, or a product ofp-adics.507

Let p be a prime number that is totally split in K , i.e., a prime number for which f has n508

distinct roots inFp. One can rapidly recognize this case by seeing that xp−xmodulo f is 0.509

Standard root-finding algorithms—or multipoint evaluation of f on Fp if p is small—then510

find the roots. One can do even better for special types of f : in particular, for K = Q(ζm),511

one can take any prime number p ∈ 1+mZ, and there are very fast algorithms to find all512

primitivemth roots of 1 in Fp.513

The set of ring morphisms x �→ ρ from Z[x]/f to Fp, as ρ runs through roots of f514

in Fp, is analogous to the set of complex embeddings σ used above. Evaluating all these515

ring morphisms on a given input g ∈ Z[x]/f is a simple matter of multipoint evaluation,516

assuming the roots have been precomputed; the vector of outputs can be viewed as a517

limited-precision representation of the input. The product of outputs is the image in Fp of518

detZ[x]/f
Z

g = detKQ g(θ ), where as before θ is a root of f in K . Repeating for enough primes519

p (or one large enough p or any intermediate possibility) then determines detKQ g(θ ).520

Overall this approach has similar asymptotics to the continued-fraction approach.521

Montgomery noted in [72, Section 4.2] that remainder trees seem to be a constant factor522

more efficient than continued-fraction computations for most inputs.523

More generally, to compute resultant(f, g) where f has a known factorization, one can524

use a remainder tree to reduce g modulo each factor, and then compute resultant(f, g) as a525

corresponding product.Whether one should take the time to search for factors of f (or for526

primes p where f factors better) is a different question: this depends on the distribution527

of f and on how often f will be reused for resultants. In the applications motivating528

this paper (see Sect. 5), detKQ is evaluated on many inputs in K , so many K -dependent529

precomputations are worthwhile.530

3.7 The Galois case: exploiting automorphisms531

Another convenient field where f splits completely is K itself—assuming that K is Galois.532

Journal: 40993 Article No.: 0402 TYPESET DISK LE CP Disp.:2023/3/4 Pages: 58 Layout: BMC-OneCol



un
co

rr
ec

te
d 

pr
oo

f

_####_ Page 18 of 58 D. J. Bernstein Res. Number Theory_#####################_

Say f = (x−ρ1) · · · (x−ρn) in K [x]. One can evaluate g(ρ1), . . . , g(ρn) with a remainder533

tree, and then use a product tree to compute the product g(ρ1) · · · g(ρn), which is exactly534

detKQ g(θ ).535

In the case of a power-of-2 cyclotomic K = Q(ζm), one has {ρ1, . . . , ρn} =536
{
ζm, ζ 3m, . . . , ζm−1

m
}
with n = m/2, since xn + 1 = (x − ζm)(x − ζ 3m) · · · (x − ζm−1

m ). Com-537

puting g(ζ cm) is simply rearranging and negating coefficients. There are still n choices of c,538

with n coefficients to handle for each c, and then more work is required for a product.539

Consider a 4-factor product g(ρ1)g(ρ2)g(ρ3)g(ρ4). By assumption g has weight n1/2+o(1),540

so one expects the maximum coefficient of this product to have �(log n) bits, so com-541

puting this product costs n(log n)2+o(1). There are �(n) such products, together costing542

n2(log n)2+o(1). There are then �(log n) layers in the product tree, but one can achieve543

total cost n2(log n)2+o(1) by arranging the tree to have inputs in Q(ζ4) for the final multi-544

plication, Q(ζ8) for the multiplications on the previous layer, etc.545

This approach is using someof the structure thatwill be exploited in Sect. 4, but still costs546

n2+o(1) because of the computations—and thenmultiplications—of n different conjugates547

of the input.548

4 Linear techniques549

The fast detKQ α computation in Sect. 1 started with an element α of a power-of-2 cyclo-550

tomic field K = Q(ζm) with m/2 small coefficients, computed a product β = ασ (α) in551

Q(ζm/2)withm/4 double-size coefficients, computed a productβτ (β) inQ(ζm/4)withm/8552

quadruple-size coefficients, etc. The amount of data at each layer is essentially linear—553

unlike the techniques in Sect. 3, which expand each of the m/2 input coefficients to a554

volume of data comparable to the number of output bits. This section explores the ques-555

tion of how general this speedup is.556

4.1 Towers557

Consider any tower Q = K0 ⊆ K1 ⊆ · · · ⊆ Kt of number fields, with absolute degrees558

n0, n1, . . . , nt and relative degrees d1, . . . , dt . Then n0 = 1, n1 = d1, n2 = d1d2, and so on559

through nt = d1d2 · · · dt . For simplicity assume dj ≥ 2 for all j, eliminating trivial steps in560

the tower.561

Consider an algorithm that, given α ∈ Kt , computes successively562

αt = detKt
Kt
α as α,

αt−1 = detKt
Kt−1

α as detKt
Kt−1

αt ,

αt−2 = detKt
Kt−2

α as detKt−1
Kt−2

αt−1,
...

α1 = detKt
K1
α as detK2

K1
α2,

α0 = detKt
K0
α = detKt

Q
α as detK1

K0
α1.

563

I’ll assume from now on that the desired input field K is exactly Kt , so the output α0 is564

detKQ α. Also write n = nt .565

(One could, more generally, take K to be any subfield of Kt . If α ∈ K then one can566

compute±detKQ α as α1/e0 where e = (degKt )/degK . The sign of detKQ α is clear if e is odd;567

one can use low-precision complex embeddings to recover the sign in the general case,568
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if the sign matters for the application. However, so far I haven’t found any cases where569

allowing e > 1 saves time compared to reducing to the case e = 1, i.e., replacing each Kj570

with Kj ∩ K , obtaining a tower for K .)571

To analyze how costs scale, let’s postulate the following scenario: each αj hasO(n log n)572

bits across its nj coefficients, withO((n/nj) log n) bits in each coefficient; αj has�(n log n)573

bits whenever nj < n/2; α0 has�(n log n) bits. The idea that this is a typical scenario is an574

extrapolation from Sect. 2.575

One might now hypothesize, extrapolating from Sect. 3, that computing αj−1 from αj576

has cost growing as d2j times the number of bits in αj−1 times (log n)e+o(1), where e = 1577

for “FFT-friendly” choices of K and e = 2 for other choices of K . The total cost in the578

above scenario is then at most (d21 + · · ·+ d2t )n(log n)e+1+o(1). (The only reason for saying579

“at most” under these hypotheses is that not all αj are assumed to have �(n log n) bits; in580

particular, αt is merely assumed to have O(n log n) bits.)581

The sum d21 + · · · + d2t is at least tn2/t . It is exactly tn2/t if d1 = · · · = dt . For example,582

it is 4 log2 n if d1 = · · · = dt = 2; 8 log2 n if d1 = · · · = dt = 4; and 64 log2 n if583

d1 = · · · = dt = 16.On the other hand, it is 4(t−1)+n2/4t−1 ifd1 = d2 = · · · = dt−1 = 2584

and dt = n/2t−1.585

Define a smooth tower as one where dj ∈ (log n)o(1) for each j. This does not require586

t to grow as �(log n): for example, one could have dj ∈ (log n)�(1/log log log n) for each587

j, and t ∈ �((log n)(log log log n)/log log n). For a smooth tower, the total cost above—588

assuming the scenario described above, and assuming the hypothesized cost of each step589

of the computation—is n(log n)e+2+o(1).590

4.2 Whymultiplication is perceived to be fast591

Let’s see whether it’s possible to justify the above hypothesis regarding the cost of comput-592

ingαj−1 fromαj . Note that, for a smooth tower, d2j is aminor cost factor, and larger powers593

of dj in the cost would contribute at most (log n)o(1). The main cost factors to worry about594

are the nj−1 coefficients in αj−1 and the number of bits per coefficient, typically giving595

�(n log n) bits overall.596

Consider the case that Kj has the form Kj−1(
√
δ), with dj = 2, where δ is a non-square597

in Kj−1. Write σ for the unique automorphism of Kj fixing Kj−1 and mapping
√
δ to−√

δ.598

Then Kj−1 is the fixed field of σ , and one can compute αj−1 as αjσ (αj), as in the power-599

of-2-cyclotomic example in Sect. 1. How quickly can one multiply two elements of Kj ,600

namely αj and σ (αj)?601

As in Sect. 3.3, let’s use the “standard representation” of a number field as Q[x]/ϕ for602

some monic irreducible polynomial ϕ ∈ Z[x], with elements of Q[x]/ϕ in turn expressed603

as elements of Q[x] of degree below deg ϕ. One of the reasons for the popularity of this604

representation is that it reduces number-field computations to polynomial computations,605

which in turn are well known to have fast algorithms.606

In particular, multiplying two elements of Z[x]/ϕ—let’s not get distracted here by the607

possibility of integral elements having denominators in this representation—means mul-608

tiplying two integer polynomials and then reducing the product modulo ϕ. There are609

well-known fast algorithms for each step, and it is easy to prove bounds on the output610

coefficients.611
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Specifically, let n andH be positive integers. The product of two n-coefficient polynomi-612

als g, h ∈ Z[x], with each coefficient of g, h in the interval [−H,H ], is a (2n− 1)-coefficient613

polynomial with each coefficient in [−nH2, nH2]. One way to compute this product is614

by segmentation: multiply the integers g(2e) and h(2e) where e = ⌊
log2(4nH2)

⌋
, and615

recover gh from g(2e)h(2e). The integers g(2e) and h(2e) have O(n log 2nH ) bits. Standard616

integer-multiplication algorithms take time essentially linear in n log 2nH . This approach617

of combining segmentation with fast multiplication was used by Schönhage [84, Section618

2], as noted in Sect. 3.619

For reduction, one can multiply gh by a sufficiently precise approximation of the power620

series 1/ϕ ∈ Z[[x−1]], round down to obtain
⌊
fg/ϕ

⌋
, multiply by ϕ, and subtract from fg621

to obtain fg mod ϕ. All of this is fast when ϕ and the approximation to 1/ϕ have small622

coefficients. For example, if ϕ is the 1009th cyclotomic polynomial (x1009−1)/(x−1), then623

a sufficiently precise approximation to 1/ϕ is x−1008 + x−1009. As a variant, rather than624

reducing gh after recovering it from g(2e)h(2e), one can first reduce g(2e)h(2e) modulo625

ϕ(2e) and then recover gh mod ϕ, provided that e is chosen large enough; see, e.g., [44,626

Proposition 1].627

There aremore details to fill in regarding the cost of computing σ , how to handle dj > 2,628

etc., but the above description might make it seem plausible that one can use any smooth629

tower for K to quickly compute detKQ α. A closer look shows, however, that multiplication630

is not so easy.631

4.3 The challenge of multiplying quickly in subfields632

The computation at hand isn’t simply multiplying in one field Q[x]/ϕ. It’s computing633

an element of a subfield of, say, half degree, and then continuing recursively with fast634

operations in that subfield.635

Write K = Q[x]/ϕ. Assume that θ ∈ K generates a subfield F with deg F = (degK )/2.636

Write ψ for the minimal polynomial of θ , and write E for the field Q[y]/ψ . The ring637

morphism y �→ θ from Q[y] to F induces an isomorphism from E to F . Applying the638

inverse of this isomorphism to detKF g ∈ F produces an element ofE, reducing the problem639

of evaluating detKQ to the half-degree problem of evaluating detEQ. But how fast is this640

inverse isomorphism?641

Cohen’s second textbook [35, page 65, top paragraph] considers this problem (mention-642

ing, as an example, taking a “relative trace or norm” from Q[x]/ϕ down to F and repre-643

senting it as an element of Q[y]/ψ) and suggests falling back to linear algebra, treating the644

isomorphism as aQ-module isomorphism and inverting the matrix for this isomorphism.645

Simply looking at the matrix inverse already involves a quadratic number of matrix646

entries. Onemight hope for a fast inversionmethod exploiting the structure of thismatrix;647

but, no, the situation is even worse.648

Take, for example, ϕ = (x1009 − 1)/(x − 1), and consider the subfield F of K = Q[x]/ϕ649

generated by x + 1/x. The minimal polynomial ψ ∈ Q[y] of x + 1/x is650

y504 + y503 − 503y502 − · · · − 917285588550945621669039

9659548581991981915884700658789713569504909034649084227

6029300596063250047752380 y226 − · · · + 2667126y3 − 31878y2 − 252y + 1

651

with coefficients as large as 346 bits.652
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The effects that force large coefficients in this polynomial ψ also force the inverse653

matrix mentioned above to have many large entries. The typical outputs of the inverse654

isomorphism are correspondingly large, nomatter whatmethod is used to compute them.655

Take, e.g., the small element x500 + 1/x500 = x500 + x509 of K . This has, under the656

isomorphism, preimage 2T500(y/2) where Tj is the jth Chebyshev polynomial of the first657

kind; 102 coefficients of this polynomial have more than 300 bits each, including 344-bit658

coefficients of y220, y222, y224 , y226.659

To summarize, the elements of Q[y]/ψ being multiplied won’t normally have small660

coefficients, and ψ doesn’t have small coefficients. This breaks multiple steps in the argu-661

ment that arithmetic in this field is fast. If the original input g ∈ Q[x]/ϕ has very large662

coefficients, then there isn’tmuch impact from the extra size ofψ etc., but the applications663

motivating this paper (see Sect. 5) start with very small coefficients.664

4.4 The superfield representation665

The inconvenience of working with “the standard representation” of a real-cyclotomic666

field R ∩ Q(ζm) = Q(ζm + ζ−1
m ), such as working with Q[y]/ψ for the degree-504 poly-667

nomial ψ shown above in the casem = 1009, is not a new observation. The literature on668

computations in R ∩ Q(ζm) typically represents field elements as elements of the larger669

field Q(ζm), which in turn is represented as Q[x]/�m where �m is the mth cyclotomic670

polynomial.671

However, this representation is redundant, for examplewithonly 504degrees of freedom672

in the 1008 coefficients for m = 1009. Multiplying elements represented in this way is673

correspondingly redundant. One cannot simply dismiss this effect as a constant-factor674

slowdown: if elements of a degree-nj field Kj are represented as elements of a degree-nt675

field Kt then there are nt/nj times as many coefficients as desired, and nt/nj can be on the676

scale of n.677

4.5 Relative representations678

Cohen’s second textbook includes a chapter [35, Chapter 2] on “basic relative number679

field algorithms”, saying [35, Section 2.1.1] that, compared to representing a number field680

L as an extension of Q, representing L as an extension of a nontrivial subfield K is “usually681

preferable”. Two reasons stated in [35] for this preference are that682

• The defining polynomial of L over K is of “lower degree” and683

• “The K -structure on L gives considerably more arithmetical information than con-684

sidering L on its own”.685

For example, consider again the case that Kj = Kj−1(
√
δ), where δ is a non-square in686

Kj−1. The Kj−1-relative representation of Kj (to be more precise, of the pair (Kj,
√
δ)) is as687

Kj−1[x]/(x2 − δ): the polynomial α0 + α1x in Kj−1[x] represents the element α0 + α1
√
δ688

of Kj . The specified generators of Kj as a Q-vector space are simply the generators of Kj−1689

followed by
√
δ times the same generators. Extracting α0,α1 from this representation is690

simply extracting the first half and the second half of the coefficients.691

How quickly can one multiply two elements in the relative representation of Kj? A692

standard Karatsuba-type multiplication of α0 + α1x by β0 + β1x in Kj−1[x] involves three693

multiplications in Kj−1. One also incurs a multiplication by δ to reduce modulo x2 −694
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δ, although often one can choose δ to make this multiplication very fast. At best this695

algorithm reduces a multiplication problem to three half-size multiplication problems. If696

this is applied recursively in a 2-power tower then degree-nmultiplication involves nlog2 3697

multiplications in Q, not counting the δ multiplications.698

As noted in Sect. 1, van der Hoeven and Lecerf [59] suggested choosing towers with699

superconstant relative degrees dj so as to reduce the number of base-field multiplications700

to n1+o(1). One can obtain cost n(log n)O(1) for multiplications in a tower represented in701

this way by requiring each layer to have multiplication overhead (log n)O(1/t) for relative702

degree n�(1/t); this is easy for t ∈ �(1), but seems hard for t ∈ �((log n)/log log n). See703

also the discussion of open problems in [59, Conclusion]. I don’t see how this approach704

can obtain cost n(log n)O(1) for computing detKQ α with�(n log n) bits.705

4.6 The Abelian case706

From now on, let’s focus on Abelian number fields, i.e., Galois number fields with com-707

mutative Galois groups, and see whether this added structure gives faster algorithms.708

The Kronecker–Weber theorem states that each Abelian number field is a subfield709

of some cyclotomic field Q(ζm); see, e.g., [94, Theorem 14.1]. Conversely, subfields of710

cyclotomic fields are certainly Abelian. The smallest positive integer m such that K ⊆711

Q(ζm) is called the conductor of K .712

(In this paper, as in [69, page 9], a “number field” is a subfield ofChaving finite dimension713

as a Q-vector space. Often the literature defines “number field” more broadly as a field714

containing Q and having finite dimension as a Q-vector space; but this broader definition715

breaks typical statements of the Kronecker–Weber theorem, such as [94, Theorem 14.1].716

As aworkaround, one could say that each number field in this broader sense is isomorphic717

to a number field in the strict sense, so each Abelian number field in this broader sense718

is isomorphic to a subfield of Q(ζm) for some m; or, as in [61, Theorem 5.9], one could719

say that each Abelian number field in this broader sense has a superfield of the form Q(ζ )720

where ζ is a root of unity.)721

In analyses of the costs of algorithms below, I’ll ignore the cost of various per-field722

precomputations. Formally, this is most easily described as existence of an algorithm723

AK for each suitable field K ; the cost of evaluating K �→ AK is irrelevant to the cost724

of evaluating α �→ AK (α). In reality, optimizing the precomputation cost could be of725

interest, but only in corner cases where m is much larger than n or where there are not726

many computations for each K . Specifically, all of the precomputations below take time727

mO(1); I’ll assume that m is nO(1), so the precomputation time is also nO(1), which is, at728

least asymptotically, outweighed by the number of detKQ evaluations in Section 5.729

4.7 The Gauss-period representation for prime conductor730

Within the set of Abelian fields, let’s start with the case of odd prime conductor p, specif-731

ically by reviewing a standard construction of all of the subfields of Q(ζp); these all have732

conductor p, except for Q, which has conductor 1.733

This construction is due toGauss. The proof that each subfield ofQ(ζp) is one of Gauss’s734

fields is typically presented today as an application of Galois theory, but my impression is735

that this application is merely a restatement in different language of facts that Gauss had736
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proven in [48]. Gauss stated facts without proof for more general cyclotomic fields (see737

[2]); I’ll return later to the difficulties that appear in the general case.738

4.7.1 Example: the Gauss periods for p = 17739

Gauss’s ruler-and-compass construction of a 17-gon [48, Section 354] exhibited, in740

essence, a tower of number fields Q = K0 ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4 = Q(ζ17) with741

degKj = 2j . Explicitly, with ζ17 abbreviated as ζ :742

• K4 has Q-basis ζ±1, ζ±2, ζ±3, ζ±4 , ζ±5, ζ±6, ζ±7, ζ±8.743

• K3 hasQ-basis ζ+ζ−1, ζ 2+ζ−2, ζ 3+ζ−3, ζ 4+ζ−4 , ζ 5+ζ−5, ζ 6+ζ−6, ζ 7+ζ−7, ζ 8+744

ζ−8. Each basis element displayed here has exponents c,−c modulo 17 for some c;745

note that {1,−1} is the unique subgroup of (Z/17)∗ of order 2.746

• K2 has Q-basis ζ + ζ 4 + ζ−4 + ζ−1, ζ 2 + ζ 8 + ζ−8 + ζ−2, ζ 3 + ζ−5 + ζ 5 + ζ−3,747

ζ 6 + ζ 7 + ζ−7 + ζ−6. Each basis element displayed here has exponents c, 4c,−4c,−c748

modulo 17 for some c; note that {1, 4,−4,−1} is the unique subgroup of (Z/17)∗ of749

order 4.750

• K1 has Q-basis ζ + ζ 2 + ζ 4 + ζ 8 + ζ−8 + ζ−4 + ζ−2 + ζ−1, ζ 3 + ζ 6 + ζ−5 + ζ 7 +751

ζ−7 + ζ 5 + ζ−6 + ζ−3. These are (−1 + √
17)/2 and (−1 − √

17)/2; the field K1 is752

Q(
√
17).753

These basis elements are called “Gauss periods” (or “Gaussian periods”), not to be con-754

fused with “Gauss sums”, which are Fourier transforms of Gauss periods. Beware that the755

literature sometimes uses the terminology “Gauss sums” for Gauss periods; see, e.g., [12].756

4.7.2 Constructing Gauss periods for any odd prime p757

Let p be an odd prime number. The field Q(ζp) has Galois group isomorphic to (Z/p)∗;758

each element c ∈ (Z/p)∗ corresponds to the unique automorphism σc of Q(ζp) mapping759

ζp to ζ cp . Note that this automorphism permutes the Q-basis ζp, ζ 2p , . . . , ζ
p−1
p of Q(ζp).760

The group (Z/p)∗ is a cyclic group with #(Z/p)∗ = p− 1, so, for each divisor d of p− 1,761

there is a unique subgroupH of (Z/p)∗ with #H = d. The fixed field of the corresponding762

group of automorphisms is the unique subfield F of Q(ζp) of degree (p − 1)/d.763

Explicitly, the Gauss period ζ jp + ζ
cj
p + ζ

c2j
p + · · · + ζ

cd−1j
p , where j ∈ (Z/p)∗ and764

d is the order of c in (Z/p)∗, is in the fixed field F of σc ; it is exactly trQ(ζp)
F ζ

j
p.765

The set {trQ(ζp)
F ζ

j
p : j ∈ (Z/p)∗} is a Q-basis set for F . This follows from the fact that766 {

ζ
j
p : j ∈ (Z/p)∗

}
is a Q-basis set for Q(ζp). The point is that σc maps α = ∑

j∈(Z/p)∗ αjζ
j
p767

to
∑

j∈(Z/p)∗ αjζ
cj
p = ∑

j∈(Z/p)∗ αj/cζ
j
p, so σc fixes α exactly when αj = αj/c for each j, i.e.,768

exactly when j �→ αj is constant on orbits of multiplication by c.769

The Q-basis ζp, ζ 2p , . . . , ζ
p−1
p of Q(ζp) is an integral basis: its Z-span is Z[ζp], the ring770

of integers of Q(ζp). Consequently the Gauss-period basis for each subfield of Q(ζp) is an771

integral basis for that subfield.772

Another important feature of the Gauss-period basis is that one can efficiently compute773

conjugates of field elements represented as Q-linear combinations of Gauss periods. For774

the same reason, the representation is subfield-compatible (andhence compatiblewith any775

given tower of subfields): ifK ⊆ L are subfields ofQ(ζp) then one can efficiently (1)map an776

element of K from K ’s Gauss-period representation to L’s Gauss-period representation,777

and (2) invert this map on its image.778
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4.8 Multiplication algorithms for the Gauss-period representation for prime conductor779

Bach and Shallit [7, Section 4, “period basis”], crediting Lenstra, used the Gauss-period780

basis for computations in an Abelian field K of prime conductor p. The multiplication781

algorithm in [7] for this basis has cost cubic in the degree of K .782

Gao, von zur Gathen, and Panario [47, Section 3] instead used the superfield represen-783

tation of elements of K as elements of Q(ζp), giving multiplication cost essentially linear784

in p. This cost can be much smaller than cubic in the degree of K , but can also be much785

larger: consider, as an extreme example, the quadratic field K = Q(√p).786

The general issue here was noted in [7, page 206, “we would like to avoid using the larger787

field”]; the issue for Q(√p) was noted in [29, Section 7, first paragraph]. This was not a788

big issue for [47]. The goal of [47] was to multiply in Fq for a given prime power q; the789

strategy in [47] was to represent Fq as a quotient of a degree-n subring of Q(ζp); in this790

context, one can safely restrict attention to the case that p − 1 is not much larger than n.791

However, if the goal is instead to evaluate detQ(ζp)
Q

via a smooth tower of subfields ofQ(ζp)792

then one ends up considering subfields of many degrees, with similar data volume in each793

degree, so one cannot ignore the gap between the degree and p − 1.794

Let’s look more closely at known essentially-linear-time multiplication algorithms for795

Q(ζp). A conventional FFT modulo xm − 1, wherem is a power of 2 above 2p, works with796

the additive structure of the exponent groupZ/m. A different essentially-linear-timeDFT797

algorithm, introduced by Rader in [82], instead works with the multiplicative structure of798

(Z/p)∗—and we’ll see in a moment that Rader’s algorithm can easily take advantage of the799

symmetries of the Gauss-period basis for a subfield of Q(ζp).800

See Appendix A for software to double-check the main algorithms presented here.801

4.8.1 Rader’s FFT802

The goal is to compute a size-pDFT over a ring Rwhere p is an odd prime: i.e., to compute803

g(1), g(ζ ), . . . , g(ζ p−1) given g ∈ R[x] with deg g < p, where ζ is a primitive pth root of 1804

in R.805

Write g as g0 + g1x + · · · + gp−1xp−1. Rader handles g0 separately (simply adding g0 to806

each output), and handles g(1) separately, easily reducing to the problem of computing807

g(ζ ), . . . , g(ζ p−1) where g = g1x + · · · + gp−1xp−1. Let’s now focus on that problem.808

View g as an element of the group ring R[Z/p]; i.e., view the indices of g as elements of809

Z/p. Let ω be a generator of (Z/p)∗. Then810

g(ζω
b
) =

∑

j∈(Z/p)∗
gjζω

bj =
∑

a∈{0,1,...,p−2}
gω−aζω

b−a
.811

In other words, Ob = ∑
a IaZb−a, where Ia = gω−a , Zb = ζω

b , and Ob = g(ζωb ): the812

output sequence O is a length-(p − 1) cyclic convolution of the input sequence I and the813

constant sequence Z, i.e., a product in the group ring R[Z/(p − 1)]. Rader concludes by814

pointing to essentially-linear-time subroutines for cyclic convolution.815

4.8.2 Inverting Rader’s FFT816

The standard principle that a DFT with exponents negated is an inverse DFT, aside from817

scaling by a constant factor, means that one can use a DFT algorithm for an inverse818

DFT without inspecting the details of the algorithm. However, seeing how to merge this819
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principle into the details of Rader’s algorithm turns out to be useful for the generalized820

algorithms in Sects. 4.8.4 and 4.12.4.821

The details are as follows. Again handle g0 and g(1) separately, easily reducing to the822

problem of recovering g = g1x + · · · + gp−1xp−1 given g(ζ ), . . . , g(ζ p−1), i.e., recovering823

the above sequence I from the above sequence O. Define Z′
b = (Z(p−1)/2−b − 1)/p. The824

following calculation, where the indices a, b range over Z/(p − 1), shows that Z has a825

convolution inverse, specifically Z′:826

p
∑

a
ZaZ′

b−a =
∑

a
ζω

a
(
ζω

(p−1)/2+a−b − 1
)

=
∑

a
ζω

a
ζ−ωa−b −

∑

a
ζω

a =
∑

a
ζ (1−ω−b)ωa −

∑

a
ζω

a
.

827

This last quantity is, as desired, p if b = 0, else 0; the point is that
∑

a ζ
sωa is p − 1 if828

s = 0, else −1. Hence convolution with Z′ is deconvolution with Z; in particular, I is the829

convolution of O and Z′.830

4.8.3 Exploiting input symmetries in Rader’s FFT831

If g is real, meaning that gj = g−j for each j ∈ (Z/p)∗, then g(ζ c) = g(ζ−c). In other words,832

if the input sequence I is periodic with period (p − 1)/2, then the output sequence O is833

also periodic with period (p− 1)/2. One can exploit this twofold symmetry by folding the834

Z sequence: one has835

Ob =
∑

a
IaZb−a =

∑

0≤a<(p−1)/2
IaZb−a +

∑

(p−1)/2≤a<p−1
IaZb−a

=
∑

0≤a<(p−1)/2
Ia(Zb−a + Zb−a+(p−1)/2) =

∑

0≤a<(p−1)/2
IaYb−a

836

where Yb = Zb+Zb+(p−1)/2. This expresses the first half ofO as a length-((p−1)/2) cyclic837

convolution of Y and the first half of I .838

More generally, fix a positive integer d dividing p−1, and say gj = gjωd for all j ∈ (Z/p)∗.839

(The previous paragraph is the case d = (p− 1)/2.) Then the input and output sequences840

are periodic with period d, and are determined by their first d entries, i.e., the entries841

at positions 0 through d − 1. The first d entries of the output O are a length-d cyclic842

convolution of Y and the first d entries of I , where now Yb = Zb+Zb+d +· · ·+Zb+p−1−d .843

The number of operations in this convolution, after precomputation of the Y sequence,844

is essentially linear in d: more precisely, d(log d)1+o(1).845

This folded generalization of Rader’s FFT algorithm is not new. Arita and Handa [6,846

Sections 3.3–3.4] considered theGauss-period basis of a subfield ofQ(ζp) (notmentioning847

that these are Gauss periods), considered DFTs (under another name) of elements of the848

subfield, and expressed these DFTs as convolutions (not mentioning Rader’s algorithm).849

4.8.4 Inverting a folded Rader FFT850

Define Y ′
b = Z′

b + Z′
b+d + · · · + Z′

b+p−1−d = (Y(p−1)/2−b − (p − 1)/d)/p. Then Y ′ is the851

convolution inverse of Y : the folding map from the group ring R[Z/(p − 1)] to R[Z/d]852

maps Z to Y , maps Z′ to Y ′, and maps the equation ZZ′ = 1 to the equation YY ′ = 1.853

Convolution with Y ′ thus inverts the folded Rader algorithm from Sect. 4.8.3.854

In other words: Consider the problem of recovering, from the input described in a855

moment, a polynomial g ∈ R[x] with deg g < p, with g(0) = 0, and with the periodicity856
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gj = gjωd for all j ∈ (Z/p)∗, where indices are again interpreted as elements of Z/p. The857

input consists of the first d entries of the d-periodic sequence O defined by Ob = g(ζωb );858

i.e., the values of g at ζ , ζω , ζω2 , . . . , ζωd−1 .859

To solve this problem, simply apply a length-d cyclic convolution of the input sequence860

with Y ′, obtaining the first d entries of the sequence I defined by Ia = gω−a . These entries861

are the coefficients of g on the R-basis862

xω
0 + xω

d + xω
2d + · · · + xω

p−1−2d + xω
p−1−d

,

xω
−1 + xω

d−1 + xω
2d−1 + · · · + xω

p−2−2d + xω
p−2−d

,
...

xω
1−d + xω

1 + xω
d+1 + · · · + xω

p−3d + xω
p−2d

.

863

Note that replacing x with ζp in these formulas produces the Gauss periods.864

Combining the folded Rader FFT with the inverse folded Rader FFT produces a fast865

multiplication algorithm for this type of periodic polynomial. One is given two peri-866

odic polynomials f, g ; one uses the folded Rader FFT to evaluate the polynomials at867

ζ , ζω , ζω2 , . . . , ζωd−1 ; one then multiplies pointwise and uses the inverse folded Rader868

FFT to interpolate, obtaining a periodic polynomial h with the same values as f, g . The869

periodicity implies that h has the same values as fg at all powers of ζ , so h = fg in870

R[x]/((xp − 1)/(x − 1)). All of this takes just d(log d)1+o(1) operations in R, after precom-871

putation of the Y sequence.872

4.8.5 Integers as a base ring873

Again fix a positive integer d dividing p − 1. Consider d-periodic polynomials g ∈ Z[x],874

defined as polynomials g ∈ Z[x] satisfying deg g < p, g(0) = 0, and gj = gjωd for all875

j ∈ (Z/p)∗, with indices interpreted as elements of Z/p. As above, represent d-periodic876

polynomials on the period basis: i.e., represent g as the sequence g1, gω−1 , . . . , gω1−d . Con-877

sider the problem of multiplying d-periodic polynomials: given d-periodic f, g , find d-878

periodic h with h = fg in Z[x]/((xp − 1)/(x − 1)).879

This problem for Z reduces immediately to the same problem for Z/M, if the modulus880

M is chosen large enough to ensure that the coefficients of h in Z can be recovered from881

their images inZ/M. An easy way tomeasure “large enough” is to note that the maximum882

possible coefficient of h in absolute value is 2p − 3 times the maxima for f and g ; the883

factor 2p−3 fits into�(log p) bits, and the same factor across allO(p) coefficients fits into884

O(p log p) bits, a bound sufficiently small for this paper’s analyses. One can, with more885

work, compute bounds that are better for most inputs—for example, one can evaluate f886

and g at 1, andmore generally use low-precision complex embeddings to estimate sizes, as887

mentioned in Sect. 3.3—but a logarithmic factor is to be expected, as explained in Sect. 2.888

The reason to reduce to Z/M is that one can also chooseM to ensure that Z/M has the889

primitive roots of 1 needed for the folded Rader FFT. Concretely, takeM as a product of890

distinct primes q ∈ 1 + pdZ. Then Z/M contains a primitive pth root of 1 for defining891

the DFT in the first place, and, less importantly, contains a primitive dth root of 1 so892

that the length-d cyclic convolutions inside a folded Rader FFT can in turn be handled893

by traditional FFTs when d is smooth. Given the goal of using folded Rader FFTs, this894

reduction is the obvious adaptation of a widely used reduction suggested by Pollard [78],895

independently Nicholson [74, page 532], and independently Schönhage–Strassen [85],896
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namely reducing modulo products of primes q ∈ 1 + 2kZ to support traditional size-2k897

FFTs.898

There is a logarithmic inefficiency in this reduction when d and M are both large.899

Specifically, there are d(log d)1+o(1) multiplications in Z/M, and each multiplication in900

Z/M uses b(log b)1+o(1) bit operations ifM has b bits, so there are two logarithmic factors901

in the total cost on top of the output size bd. Recall that the usual scenario consid-902

ered in this paper is bd ∈ �(n log n); very often d is between n0.1 and n0.9, implying903

bd(log b)1+o(1)(log d)1+o(1) = n(log n)3+o(1). Let’s see how to do better, saving a logarith-904

mic factor and reaching cost bd(log bd)1+o(1) = n(log n)2+o(1).905

What does not seem to save this logarithmic factor is working separately modulo each906

prime factorq ofM, alongwith choosing eachq small enough tohave log log q ∈ (log n)o(1),907

as in Sect. 3.2. This would reduce the total cost of the folded Rader FFTs across each Z/q908

to n(log n)2+o(1); but how does one reduce Z/M to
∏

q(Z/q) in the first place? Standard909

algorithms for this reduction, and for the corresponding interpolation at the end of the910

multiplication, have two logarithmic factors, one formultiplications and one for the height911

of a product tree. See, e.g., [16, Sections 18 and 23]. This issue did not arise in Sect. 3.2:912

each reduction there started from small input coefficients, and interpolation used only913

one large coefficient.914

What does save a logarithmic factor, as in Sects. 3.3 and 4.2, is segmentation. It is impor-915

tant here that the folded Rader FFT is simply carrying out a convolution. Segmentation916

converts length-d convolution over Z/M, where M has b bits, into O(bd)-bit multipli-917

cation, costing bd(log bd)1+o(1) bit operations. It suffices here to take M as a product of918

distinct primes q ∈ 1 + pZ.919

4.8.6 Application to det evaluation920

If K is a degree-n subfield ofQ(ζp), and if K has a smooth tower (i.e., if n factors into small921

enough primes), then computing detKQ α costs n(log n)3+o(1) in the same �(n log n)-bit922

scenario. Each step through the tower costs n(log n)2+o(1) (see Sect. 4.8.5), and there are923

(log n)1−o(1) steps.924

As a concrete example, the prime p = 1009 has p − 1 = 2 · 2 · 2 · 2 · 3 · 3 · 7, so925

one can compute detKQ α for K = Q(ζ1009) by a series of multiplications in subfields of926

K of degrees 1008, 504, 252, 126, 63, 21, 7, using the Gauss-period representation of each927

subfield, using cyclic convolutions of lengths 1008, 504, 252, 126, 63, 21, 7 respectively to928

compute the underlying DFTs.929

(In this example, one could also use the prime factors of p − 1 in the opposite order, or930

any other order. In general, for eachK , all smooth towers forK have the sameperformance931

at the level of detail of this paper’s analysis. This is not saying that the towers have exactly932

the same performance; the analysis absorbs all (log n)o(1) factors.)933

This application of folded Rader FFTs to fast detKQ α computation seems to be new. A934

helpful speedup in this context is to push conjugation and subfield extraction through the935

DFTs: to compute detKj
Kj−1

αj , apply a Kj-folded DFT to αj , fold the result dj times, and936

apply a Kj−1-folded inverse DFT.937

If one is starting from a very large p and a relatively small subfield of Q(ζp) then the Y938

precomputation stated above could be a bottleneck. Each Yb is a Gauss period, with ζ ∈ R939

substituted for ζp; presumably it is possible in time nO(1) to identify the defining equation940
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of the subfield in question and solve for a suitable system of Yb values (a weak form of941

reciprocity)without even computing ζ . But such speedups are not necessary for this paper:942

recall from Sect. 4.6 thatm is assumed to be nO(1), and that per-field precomputation cost943

is not included.944

4.9 Arbitrary conductor: difficulties and desiderata945

What about arbitrary Abelian number fields, i.e., subfields of arbitrary cyclotomic fields946

Q(ζm), without the constraint ofm being prime?947

The general case is not as easy as the prime case. The group (Z/m)∗ is not cyclic in948

general, although if one splits m into prime-power components then non-cyclic compo-949

nents can appear only for the power of 2. More fundamentally, there are many m for950

which {ζ jm : j ∈ (Z/m)∗} is not a Q-basis set for Q(ζm): for example, ζ4 = i and ζ 34 = −i951

do not form a Q-basis for Q(ζ4), and ζ8, ζ 38 , ζ
5
8 , ζ

7
8 do not form a Q-basis for Q(ζ8). If one952

starts with a basis 1, ζ8, ζ 28 , ζ
3
8 for Q(ζ8) and takes traces down to Q(ζ4) then one obtains953

2, 0, 2ζ4 , 0; the nonzero traces 2, 2ζ4 form a Q-basis for Q(ζ4) but not an integral basis.954

Traces from Q(ζm) to K can behave suboptimally even when K has conductorm. Take,955

for example, m = 8 and K = R ∩ Q(ζ8). The integral basis 1, ζ8, ζ 28 , ζ
3
8 of Q(ζ8) has trace956

2, ζ8 + ζ−1
8 , ζ 28 + ζ−2

8 , ζ 38 + ζ−3
8 , which is not exactly an integral basis of K . On the other957

hand, replacing each trace with the sum of distinct conjugates replaces 2 with 1, giving958

an integral basis. Breuer [29], crediting Hiss and Lenstra, gave an explicit integral basis959

for every Abelian number field; see [29, Corollary 2] for cases handled by the trace, [29,960

Lemma 4] for cases handled by sums of distinct conjugates (and not by the trace), and961

[29, Lemma 3] for the the fact that these cover all cases. See Sect. 4.12 for more on this962

construction.963

Breuer’s stated objective [29, Section 1] was to find an integral basis of each Abelian964

field that allows efficient arithmetic and efficiently finding “for an arbitrary element of a965

cyclotomic field the basis representation in the smallest possible field”. This description966

considers only moving from Q(ζm) to a subfield, but it is natural to consider moving more967

generally from K to L and from L to K whenever K ⊆ L are subfields of Q(ζm). In detKQ968

evaluation via towers, it is important to be able to efficiently move from a subfield Kj to a969

smaller subfield Kj−1.970

4.10 A sub-cyclotomic-field-compatible integral basis for each cyclotomic field971

This subsection reviews one component of the construction from [29]: an integral basis972

for Q(ζm) introduced by Zumbroich [97] and independently Bosma [26]. As Bosma973

put it [26, Section 1], this basis allows one to efficiently find “the smallest cyclotomic974

field in which a given sum of roots of unity lies”. Arithmetic using this basis was975

implemented in, respectively, CAS, which was later superseded by GAP, and Cayley,976

which was later superseded by Magma. The GAP implementation is available in Sage as977

UniversalCyclotomicField.978

For each prime p and each positive integer e, choose a set Ip,e of pe−1 consecutive979

integers: e.g., the set {1, 2, . . . , pe−1}. Define Spe ⊆ Z/pe as the complement of the image980

of Ip,e in Z/pe. The specified integral basis set for Q(ζpe ) is {ζ jpe : j ∈ Spe }. In other words,981

starting from ζZ
pe , one removes some arc consisting of 1/p of the circle.982
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More generally, for each positive integer m, define Sm ⊆ Z/m as the set of images983

in Z/m of all j ∈ Z such that, for each prime divisor p of m, the set j − (m/pe)Ip,e =984
{
j − (m/pe)s : s ∈ Ip,e

}
is disjoint from peZ, where e = ordp m (i.e., m ∈ peZ and m /∈985

pe+1Z). The specified integral basis set for Q(ζm) is {ζ jm : j ∈ Sm}. This no longer has the986

arc description.987

For example, take m = 12, and choose Ip,e = {
0, 1, . . . , pe−1 − 1

}
; in particular, I2,2 =988

{0, 1} and I3,1 = {0}. The allowed exponents j then avoid 4Z + 3I2,2 = 4Z + {0, 3}, and989

avoid 3Z + 4I3,1 = 3Z, so S12 = {1, 2, 5, 10}.990

There are two steps in showing that this is an integral basis set. First, this set has the991

right number of elements. To see this, observe that if p is a prime divisor of m and992

e = ordp m then the set (m/pe)Ip,e consists of pe−1 distinct integers modulo pe. The993

condition peZ ∩ (j − (m/pe)Ip,e) = {} thus excludes exactly pe−1 choices of j modulo pe.994

These conditions are independent across p, leaving exactly
∏

p(pe − pe−1) = #(Z/m)∗995

choices of j ∈ Sm; and the map j �→ ζ
j
m on Sm is injective.996

Second, one can express any element of Z[ζm] as a Z-linear combination of ζ jm for997

j ∈ Sm. The proof is constructive. Write the input as
∑

a∈Z/m αaζ
a
m. For each prime998

divisor p of m (in, say, increasing order), define e = ordp m, and eliminate all a ∈ Z/m999

such that a − (m/pe)Ip,e includes a multiple of pe as follows: use the identity 1 = −ζp −1000

· · · − ζ
p−1
p , together with ζp = ζ

m/p
m , to rewrite ζ am as −∑

b ζ
b
m where b ranges over1001

{
a + m/p, . . . , a + (p − 1)m/p

}
. Here is why this works:1002

• The set b − (m/pe)Ip,e cannot include a multiple of pe for any of the new exponents1003

b. (If it does then the difference (b− a)− (m/pe)(Ip,e − Ip,e) includes a multiple of pe,1004

say (b − a) − (m/pe)� where � ∈ Ip,e − Ip,e. This is also a multiple of m/pe—since1005

by construction b− a is a multiple ofm/p—and hence a multiple ofm, i.e., 0 in Z/m.1006

Hence (m/pe)� is a multiple ofm/p, so� is a multiple of pe−1; but the only multiple1007

of pe−1 in Ip,e − Ip,e = {−pe−1 + 1, . . . , pe−1 − 1
}
is 0, so � = 0, so b = a, but by1008

construction b �= a, contradiction.)1009

• This property is preserved by any subsequent rewrites, i.e., replacements of ζ b with1010

ζ c where c − b is a multiple of m/p′ for a prime p′ �= p. (Indeed, c − b is a multiple1011

of pe, so if c − (m/pe)Ip,e includes a multiple of pe then b − (m/pe)Ip,e also includes a1012

multiple of pe.)1013

For each p, there are m/p exponents a ∈ Z/m that require rewrites (if they appear in1014

the input), and each rewrite takes O(p) operations, for a total of
∑

p O(m) operations;1015

this isO(m(logm)/log logm) by the prime-number theorem. Also, each layer of rewriting1016

converts B-bit coefficients into at most (B + 1)-bit coefficients, and there are at most1017

log2m layers of rewriting.1018

The choice Ip,e = {
1, 2, . . . , pe−1} has the properties Ip,e ∩ peZ = {} and pIp,e = pZ ∩1019

Ip,e+1. One can then see that the basis for any divisor of m is included in the basis for m,1020

making it trivial to recognize elements of smaller cyclotomic fields. These bases are what1021

Bosma [26] calls “canonical bases for cyclotomic fields”.1022

GAP instead takes Ip,e as
{−(pe−1 − 1)/2, . . . , (pe−1 − 1)/2

}
for odd p, and1023

{
2e−1, . . . , 2e − 1

}
for p = 2. The choice 0 ∈ Ip,1 for odd p gives, e.g., basis ζp, ζ 2p , . . . , ζ

p−1
p1024

for Q(ζp). This does not include a basis element for Q: recognizing the subfield Q requires1025
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checking for equal coefficients as in [29, Corollary 3]. The advantage of this basis, as in1026

Sect. 4.8, is that conjugation is as easy as possible.1027

One can freely use one choice of Ip,e to simplify conjugation and another choice of Ip,e to1028

simplify subfield detection, since it is efficient to rewrite any input using any given choice1029

of Ip,e. Also, given a rewriting function for one choice of Ip,e, one can conjugate the input1030

by a power of ζm to obtain a rewriting function for a rotated basis, i.e., a rotated choice of1031

Ip,e.1032

4.11 Cyclotomic fields of smooth conductor1033

Consider computing detKQ via a smooth tower of cyclotomic fields Q = Q(ζm0 ) ⊂1034

Q(ζm1 ) ⊂ · · · ⊂ Q(ζmt ) = K . This setup requires mt to be smooth, which is more1035

restrictive than merely requiring Q(ζmt ) to have smooth degree; on the other hand, this1036

avoids the prime-conductor requirement from Sect. 4.8.1037

If each Kj = Q(ζmj ) is represented as in Sect. 4.10 then it is easy to convert elements of1038

Kj−1 from the Kj representation to the Kj−1 representation. It is also easy to convert the1039

input, a small element of Z[ζmt ], to the Kt representation. One obvious way to compute1040

detKj
Kj−1

αj , given αj ∈ Kj , is to multiply σ (αj) across the automorphisms σ of Kj that fix1041

Kj−1, as in Sect. 3.7. The remaining question is how long conjugation and multiplication1042

take in this Kj representation.1043

Expanding the allowed set of exponents from Sm in Sect. 4.10 toZ/mmakes conjugation1044

easy, simply permuting Z/m, and reduces multiplication to the problem of multiplying1045

modulo xm−1, usingm(logm)1+o(1) coefficient operations. The rewriting operation from1046

Sect. 4.10, reducing the set of exponents from Z/m to Sm, uses at most m(logm)1+o(1)
1047

coefficient operations.1048

In terms of the degree n of Q(ζm), these costs are n(log n)1+o(1), since the ratio n/m is1049

(log n)o(1). (More precisely, n/m ≥ �(1/log log n). This is a standard calculation that runs1050

as follows. First, n/m is the product of 1−1/p over prime divisors p ofm. Choose a positive1051

integer y so that the number of primes p ≤ y is the number of prime divisors of m; then1052

n/m is at least the product of 1− 1/p over primes p ≤ y, which is�(1/log y) by Mertens’s1053

theorem,whilem is at least
∏

p≤y p, so logm is at least�(y) by the prime-number theorem.1054

This gives n/m ≥ �(1/log logm), also implying�(log log n) = �(log logm).)1055

As before, this gives total cost n(log n)3+o(1) in the �(n log n)-bit scenario. This case1056

does not need Rader’s FFT.1057

4.12 Using more subgroups1058

Let’s now unify the ideas of Sects. 4.8 and 4.11: handling K = Q(ζm) for any m using1059

any tower of subgroups of (Z/m)∗, without requiring the subgroups to correspond to1060

cyclotomic subfields.1061

4.12.1 Multicyclic convolution1062

The following paragraphs review a standard unification of conventional FFTs with fast1063

Hadamard–Walsh transforms.1064

Let R be a ring. Let t be a nonnegative integer. Let d1, d2, . . . , dt be integers with dj ≥1065

2. Write n = d1d2 · · · dt . Let ζ ∈ R be a primitive nth root of 1. Let e1, e2, . . . , et be
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nonnegative integers. Assume that e1 ∈ nZ if t ≥ 1. Let x0 be a unit in R. The goal here is1066

to multiply quickly in the ring1067

Rt = R[x1, x2, . . . , xt ]/
(
xd11 − xe10 , xd22 − xe21 , . . . , xdtt − xett−1

)
,1068

with the conventional representation of ring elements as polynomials of degree below dj1069

in xj .1070

If dj has a prime factor p < dj then one can replace the modulus xdjj − xejj−1 with the1071

moduli yp − xejj−1, x
dj/p
j − y where y is a new variable, obtaining a problem of the same1072

form with dj replaced by p, dj/p. So it suffices to consider the case that d1, d2, . . . , dt are1073

primes. Primality does not matter for the algorithm statement, but the cost analysis says1074

that smaller dj is better.1075

The multicyclic case, which is the case used in subsequent sections, is the case that1076

ej = 0 for all j; in other words, multiplication in the group ring R[G], whereG is any finite1077

commutative group. But it is also important to consider non-multicyclic cases to enable1078

the speedup from the previous paragraph.1079

The algorithm applies an FFT, a fast isomorphism from Rt to Rn; multiplies in Rn, which1080

is simply n separatemultiplications inR; and applies an inverse FFT to recover the product1081

in Rt .1082

For t = 0, there is nothing to do, so assume t ≥ 1. The first layer of the FFT algorithm1083

proceeds as follows.1084

Consider the ring morphism R[z]/(zd1 − 1) → Rd1 where coordinate c of the output,1085

for 0 ≤ c < d1, maps z to ζ cn/d1 . This is a textbook size-d1 DFT, straightforwardly1086

computable using �(d21) operations in R. This is also straightforwardly invertible using1087

�(d21) operations in R, since d1 is invertible in R by definition of primitive roots.1088

(One can improve these�(d21) operation counts by substituting more complicated DFT1089

algorithms. However, this paper will apply multicyclic convolution to smooth towers, and1090

then d1 is (log n)o(1), so d21 is also (log n)o(1). At that level of detail, the exponent of d1 in1091

the operation count does not matter.)1092

By assumption e1 ∈ nZ, so in particular e1 ∈ d1Z. The ring morphism R[x1] →1093

R[z]/(zd1 − 1) mapping x1 to xe1/d10 z is invertible since x0 is a unit, and induces a ring1094

morphism R[x1]/(xd11 − xe10 ) → R[z]/(zd1 − 1), straightforwardly computable and invert-1095

ible using�(d1) operations in R once the necessary powers of x0 have been precomputed.1096

Composing this morphism with the DFT gives a ring morphism R[x1]/(xd11 − xe10 ) → Rd11097

that maps x1 to xe1/d10 ζ cn/d1 in the cth coordinate.1098

Applying this layer to the whole ring1099

Rt = R[x1, x2, . . . , xt ]/
(
xd11 − xe10 , xd22 − xe21 , xd33 − xe32 , . . . , xdtt − xett−1

)
,1100

uses�(d1n) operations and gives a product of d1 rings of the form1101

R[x2, . . . , xt ]/
(
xd22 − xe2e1/d10 ζ e2cn/d1 , xd33 − xe32 , . . . , xdtt − xett−1

)
.1102

Each of these rings now has the same structure as Rt , except for t being reduced by 1.1103

The point is that xe2e1/d10 ζ e2cn/d1 can be expressed as a d2 · · · dt th power, since e2e1/d11104

and e2cn/d1 are multiples of d2 · · · dt ; also, ζ d1 is a primitive d2 · · · dt th root of 1. The rest1105

of the DFT proceeds recursively, using a total of�((d1 + · · · + dt )n) operations in R. The1106

inverse also uses�((d1 + · · · + dt )n) operations in R.1107
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The cost is at least�(n log n). If each dj is bounded by, say, s then the cost isO(sn log n).1108

In particular, multiplication in R[G], where G is any finite commutative group whose1109

cardinality n = #G factors into primes at most s, uses O(sn log n) operations in R.1110

Often a primitive nth root of 1 is overkill; it is easy to compute the roots that are1111

actually required given the sequence d1, d2, . . . , dt , e1, e2, . . . , et . In the multicyclic case,1112

the algorithm uses only a primitive rth root of 1 for r = lcm
{
d1, d2, . . . , dt

}
. In the1113

balanced multicyclic case, where d1 = d2 = · · · = dt , one has r = d1, usually much1114

smaller than n = dt1. The Hadamard–Walsh transform is a multicyclic transform with1115

d1 = d2 = · · · = dt = 2, and needs only a primitive 2nd root of 1: i.e., the root −1, with 21116

invertible in R.1117

4.12.2 Multicyclic convolutionwith large coefficients1118

Consider now the problem of multicyclic convolution over Z, i.e., the problem of multi-1119

plying in Z[x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1). Again write n = d1 · · · dt .1120

One can reduce multicyclic convolution over Z/M to this problem of multicyclic con-1121

volution over Z, at the expense of reducing each output coefficient separately moduloM,1122

which costs O(nb log b) if M has b bits. Conversely, one can reduce multicyclic convolu-1123

tion over Z to multicyclic convolution over a quotient Z/M selected (1) to be sufficiently1124

large to recover the output coefficients in Z and (2) to have appropriate primitive roots of1125

1 for the standard multicyclic FFTs from Sect. 4.12.1.1126

However, even in the smooth case, those multicyclic FFTs involve n(log n)1+o(1) opera-1127

tions in Z/M. Many of those operations are multiplications (except in extreme cases such1128

as Hadamard–Walsh transforms), each taking b(log b)1+o(1) operations if M has b bits.1129

As in Sect. 4.8.5, there is an inefficiency here when both b and n are large. A straight-1130

forward use of segmentation replaces the two logarithmic factors with one logarithmic1131

factor times something exponential in t; this was satisfactory in Sect. 4.8.5, with t = 1,1132

but is not satisfactory in general. One can try to reduce t by replacing d1, . . . , dt with the1133

elementary divisors of the group Z/d1 × · · · × Z/dt , but this is not helpful for, e.g., the1134

case d1 = · · · = dt = 3.1135

To do better, one can inspect standard algorithms for fast integer multiplication (see,1136

e.g., [13]) and observe that many, if not all, of the same ideas naturally support multicyclic1137

convolution. State-of-the-art multicyclic convolution as in [56] is generally more compli-1138

cated than necessary for this paper, since this paper, unlike [56], freely allows (log n)o(1)1139

factors; the following paragraphs explain a simpler algorithm. No claims of novelty are1140

made here.1141

One of the Schönhage–Strassen [85] algorithms to multiply in Z is as follows. There are1142

three parameters: a positive integer κ , a positive integer c ∈ �(log κ), and a prime number1143

p ∈ 1+κZ having�(log κ) bits.MapZ toZ[y]/(2c−y) and lift toZ[y], splitting each input1144

into coefficients between−2c−1 and 2c−1; map to Z[y]/(yκ − 1); map to (Z/p)[y]/(yκ − 1);1145

use a length-κ FFT to multiply in (Z/p)[y]/(yκ − 1). Each product coefficient has absolute1146

value at most 22c−2κ , so if p > 22c−1κ (which is compatible with p having �(log κ) bits)1147

then one easily recovers the product inZ[y]/(yκ −1), and if the output polynomial needed1148

y-degree at most κ − 1 then one easily recovers the original product in Z.1149

Typically κ is chosen as a power of 2, so that a traditional power-of-2 FFTuses�(κ log κ)1150

operations in Z/p. Each operation in Z/p uses (log κ)1+o(1) bit operations, since p has1151
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�(log κ) bits. The overall cost is thus κ(log κ)2+o(1) for outputs fitting into�(κ log κ) bits;1152

i.e., b(log b)1+o(1) for outputs fitting into b bits.1153

To handle multicyclic convolution in the same way, take a positive integer κ , a positive1154

integer c ∈ �(log κn), and a prime number p ∈ 1 + κnZ having �(log κn) bits, with1155

p > 22c−1κn. Map the ring Z[x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1) to the ring (Z[y]/(2c −1156

y))[x1, . . . , xt ]/(xd11 −1, . . . , xdtt −1) and lift to the ringZ[y, x1, . . . , xt ]/(xd11 −1, . . . , xdtt −1),1157

splitting each of the input coefficients into polynomials in y with coefficients between1158

−2c−1 and 2c−1. Then map to the ring Z[y, x1, . . . , xt ]/(yκ − 1, xd11 − 1, . . . , xdtt − 1) and1159

further to the ring1160

(Z/p)[y, x1, . . . , xt ]/
(
yκ − 1, xd11 − 1, . . . , xdtt − 1

)
.1161

Each product coefficient has absolute value at most 22c−2κn, so one recovers the1162

product in Z[y, x1, . . . , xt ]/(yκ − 1, xd11 − 1, . . . , xdtt − 1), and thus the product in1163

Z[y, x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1) assuming it has y-degree at most κ − 1, and thus1164

the product in Z[x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1).1165

The product in (Z/p)[y, x1, . . . , xt ]/(yκ − 1, xd11 − 1, . . . , xdtt − 1) can be handled as1166

explained in Sect. 4.12.1 if p ∈ 1 + κnZ. This uses O(sκn log κn) operations in Z/p if κn1167

factors into primes at most s. Each operation in Z/p uses (log κn)1+o(1) bit operations,1168

so the overall cost is at most sκn(log κn)2+o(1) bit operations for n output coefficients1169

each fitting into �(κ log κn) bits. For this paper, one should think of s as being small: the1170

smooth case emphasized in this paper is that n factors into small primes, and one can1171

easily choose κ within any desired range to also factor into small primes.1172

The applications below focus on reducing various types of FFTs over rings R to mul-1173

ticyclic convolutions, generalizing Sect. 4.8. The application to det computation takes1174

rings R of the form Z/M, where M is generally chosen larger and larger as one moves1175

down a tower; one always has b ≥ �(log n), where b is the number of bits in M. One1176

can handle the multicyclic convolutions by the algorithm in the previous two paragraphs,1177

taking κ as b/�(log bn), so κn is bn/�(log bn) = bn/�(log κn). The overall cost is then1178

sbn(log bn)1+o(1) bit operations for n output coefficients each fitting into �(b) bits. This1179

saves a log factor as desired.1180

4.12.3 A primitive size-m FFT1181

Letmbe a positive integer. LetR be a ring. Let ζ be a primitivemth root of 1 inR.WriteG =1182

(Z/m)∗. Consider the ringmorphismR[x] → RG thatmaps g to the vector b �→ g(ζ b). The1183

main objective here is to efficiently apply this morphism to g = g0+g1x+· · ·+gm−1xm−1,1184

given g0, g1, . . . , gm−1 ∈ R.1185

This morphism is a “primitive DFT”. This is, form > 1, different from a traditional “full1186

DFT”. The difference is that a full DFT evaluates g at ζ b for all b ∈ Z/m, while a primitive1187

DFT evaluates g at ζ b only for b ∈ (Z/m)∗, i.e., only for b coprime tom.1188

Note that multiplication in Z/m restricts to an action of the group G on Z/m, with one1189

orbit (m/d)(Z/d)∗ for each positive divisor d of m: for example, this orbit is (Z/m)∗ for1190

d = m, and {0} for d = 1. The notation (m/d)(Z/d)∗ here uses multiplication bym/d as1191

notation for the map from Z/d to Z/m induced by multiplication bym/d as a map from1192

Z to Z.1193

For each positive divisor d of m, define Id as the element
∑

a∈(Z/d)∗ g(m/d)aa−1 of the1194

group ring R[(Z/d)∗], and Zd as the element
∑

b∈(Z/d)∗ ζ (m/d)bb of the group ring; i.e.,1195
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these are the vectors a �→ g(m/d)a−1 and b �→ ζ (m/d)b. Write Od for the product IdZd .1196

Then1197

Od =
∑

a∈(Z/d)∗

∑

b∈(Z/d)∗
g(m/d)aa−1ζ (m/d)bb =

∑

a∈(Z/d)∗

∑

b∈(Z/d)∗
g(m/d)aa−1ζ (m/d)baba

=
∑

b∈(Z/d)∗

∑

a∈(Z/d)∗
g(m/d)aζ (m/d)bab =

∑

b∈(Z/d)∗

∑

j∈(m/d)(Z/d)∗
gjζ bjb;

1198

i.e., the entry (Od)b in the vector Od is
∑

j∈(m/d)(Z/d)∗ gjζ bj .1199

Now g(ζ b) = ∑
j gjζ bj = ∑

d
∑

j∈(m/d)(Z/d)∗ gjζ bj = ∑
d(Od)b where d runs through1200

positive divisors ofm. The desired vector b �→ g(ζ b) is thus the sum of Od across d. Care1201

is required in the details of this vector addition, for two reasons:1202

• Od is represented as a compressed vector, indexed by elements of (Z/d)∗. One thus1203

needs to synchronize indices for additions.1204

• There can be many divisors d of m, and adding each Od directly into Om would1205

incur #(Z/m)∗ additions for each d. To more efficiently handle all Od , work upwards1206

through d < m, adding each Od into Odp for the smallest prime p dividingm/d and1207

then forgetting about Od . Each d then incurs #(Z/dp)∗ ≤ dp additions, and the sum1208

of dp across divisors d ofm is bounded bym(logm)1+o(1).1209

These additions require computingOd in the first place for each positive integer d ofm,1210

i.e., multiplying Id by Zd in R[(Z/d)∗]; this is a multicyclic convolution as in Sects. 4.12.11211

and 4.12.2. For example, if m is prime then these are multiplications in R[(Z/m)∗] and1212

R[(Z/1)∗], which are cyclic convolutions of lengths m − 1 and 1 respectively; this special1213

case matches Rader’s original FFT.1214

If n = #(Z/m)∗ is smooth, meaning all prime factors in (log n)o(1), then #(Z/d)∗, a divi-1215

sor of n, also has all prime factors in (log n)o(1). The convolution algorithm of Sect. 4.12.11216

thus usesO((log n)o(1)#(Z/d)∗ log #(Z/d)∗) operations in R, henceO((log n)1+o(1)#(Z/d)∗)1217

operations in R. The total cost, the sum of costs over d, is O(m(log n)1+o(1)) since1218
∑

d #(Z/d)∗ = m, hence O(n(log n)1+o(1)) as in Sect. 4.11, hence n(log n)1+o(1) since the1219

cost for d = m is at least�(n log n).1220

When m is a power of an odd prime, this generalization of Rader’s FFT matches the1221

primitive part of a DFT algorithm by Winograd [96, Section 4]. For m = 2e, Winograd1222

uses a conventional size-2e additive FFT to directly solve the original DFT problem, rather1223

than using convolutions to compute primitive DFTs for the multiplicative group (Z/m)∗.1224

For general m, Winograd first decomposes a size-m DFT into prime-power DFTs, and1225

then reduces each odd-prime-power DFT to its primitive part. The advantage of working1226

directly with the primitive part of a size-mDFT is that it allowsmore choices of subgroups,1227

not requiring the subgroups to align with the prime-power decomposition ofm.1228

4.12.4 Inversion1229

Looking only at the primitive part of a DFT—evaluating g(ζ b) only for b ∈ (Z/m)∗, rather1230

than for all b ∈ Z/m—raises the question of how to recover g from these values. One1231

cannot hope to recover m coefficients of g from only #(Z/m)∗ values for m > 1, but if1232

one restricts the allowed g indices as in Sect. 4.10 then there is no obvious obstacle to1233

recovering g .1234

Recall the principle that a full DFT with exponents negated is an inverse full DFT. This1235

implies the sameprinciple for a primitiveDFT.Given v ∈ RG , definehj = ∑
a∈G vaζ−aj for1236
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each j ∈ Z/m; then
∑

j∈Z/m hjζ bj = ∑
a∈G va

∑
j∈Z/m ζ

(b−a)j = mvb for b ∈ G. Hence the1237

polynomial (
∑

j hjxj)/m has values vb as desired; note thatm is invertible inR since there is1238

a primitivemth root of 1. Among the preimages of v under the map R[x]/(xm − 1) → RG ,1239

this polynomial is characterized by having value 0 at ζ b if b /∈ G.1240

The inverse primitive DFT has a different shape from the forward primitive DFT: it1241

computes m values from #(Z/m)∗ values, rather than the other way around. The inverse1242

can again be reduced to a convolution in the group ringR[(Z/d)∗] for each positive integer1243

d dividing m: the element Hd = ∑
b∈(Z/d)∗ h(m/d)bb of the group ring is the product of1244

Zd = ∑
b∈(Z/d)∗ ζ (m/d)bb and Vd = ∑

a∈G v−1/a(a mod d), where a mod d means the1245

image of a in (Z/d)∗.1246

To efficiently compute Vd for all d, work downwards through d (reversing how Od was1247

handled in the forward transform), obtaining Vd for each d < m via Vdp for the smallest1248

prime p dividingm/d. The sum of dp is again bounded bym(logm)1+o(1). This procedure1249

computes all hj at similar speed to the forward transform.1250

The following paragraphs explain how to tweak the above procedure to produce an out-1251

put polynomial where all exponents j are guaranteed to have gcd
{
m, j

}
dividingm/radm;1252

here radmmeans the radical ofm, the product of prime divisors p ofm. One can then skip1253

any d not divisible by radm, rather than subsequently eliminating exponents for those d1254

as in Sect. 4.10. For example, when m is prime, the tweaked inversion procedure uses a1255

convolution only for (Z/m)∗ (skipping a convolution for (Z/1)∗), and produces exponents1256

1, . . . , m − 1 (skipping 0), exactly as in Sect. 4.8.4.1257

Consider any positive integer r dividing radm. Abbreviate gcd{m, r∞} asmr , and choose1258

sr ∈ mrZ ∩ (1 + (m/mr)Z). These quantities sr have three critical properties:1259

• If r = 1 then sr ∈ 1 + mZ.1260

• If r > 1 then gcd{m, sr} > 1.1261

• If a prime divisor p ofm does not divide r then the difference sr−srp is in (m/pordp m)Z.1262

(Both sr and srp are inmrZ and in 1+(m/mrp)Z, so sr −srp is inmrZ and in (m/mrp)Z;1263

mr is coprime tom/mrp, so sr − srp is in (mmr/mrp)Z; andmrp/mr = pordp m.)1264

Define h′
j,r = ∑

a∈G vaζ−ajsr . Then h′
j,1 = ∑

a∈G vaζ−aj = hj since s1 ∈ 1 + mZ, so1265
∑

j∈Z/m h′
j,1ζ

bj = mvb for b ∈ G. If r > 1 then
∑

j∈Z/m h′
j,rζ

bj = 0 for b ∈ G since1266

gcd{m, sr} > 1.1267

Define h′
j = ∑

r μ(r)h′
j,r whereμ is theMöbius function. (For example, h′

j = h′
j,1−h′

j,p −1268

h′
j,q + h′

j,pq if radm is the product of primes p, q.) Then
∑

j∈Z/m h′
jζ

bj = mvb for b ∈ G.1269

The polynomial (
∑

j h′
jx

j)/m, like the previous polynomial (
∑

j hjxj)/m, thus has the1270

desired values vb. This polynomial also has the extra feature described above: h′
j can be1271

nonzero only if gcd
{
m, j

}
divides m/radm. (Indeed, consider any j for which gcd

{
m, j

}
1272

does not dividem/radm, i.e., for which ordp j ≥ ordp m for some prime p dividingm. If p1273

does not divide r then sr − srp ∈ (m/pordp m)Z, so jsr − jsrp ∈ mZ, so ζ−ajsr = ζ−ajsrp for1274

each a ∈ G, so h′
j,r = h′

j,rp; hence h
′
j = 0.)1275

Fast computation of this polynomial works the same way as fast computation of the1276

previous polynomial: the desired H ′
d = ∑

b∈(Z/d)∗ h′
(m/d)bb is the product of Z

′
d and Vd in1277

the group ring R[(Z/d)∗], after a precomputation of Z′
d = ∑

r μ(r)
∑

b∈(Z/d)∗ ζ sr (m/d)bb.1278

If d is not divisible by radm then Z′
d = 0; again, the point of this tweak is to skip such1279

values of d.1280
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4.12.5 Folding: the symmetric case1281

Now letH be a subgroup ofG, and write K for the subfield of Q(ζm) fixed by {σc : c ∈ H}.1282

The objective here is to save a factor essentially #H for arithmetic on elements of this1283

subfield. The special case of primemwas handled by the folded Rader FFT from Sect. 4.8.1284

As a starting point, if K has conductor smaller thanm, then one can replacem with the1285

conductor, and replace H with the corresponding subgroup for the new conductor. For1286

each change of conductor, one also needs to correspondingly change the input represen-1287

tation; Sect. 4.10 explained how to do this for full cyclotomic fields, and this conversion1288

is compatible with the symmetries described below. So assume from now on that K has1289

conductorm.1290

DefineH0 = H∩(1+(radm)(Z/m)). Section4.12.7 explainshow tohandle thepossibility1291

that #H0 > 1. Assume for now that #H0 = 1. For example, if m is squarefree, then1292

radm = m, so #H0 = 1.1293

By [29, Lemma 3(1) and Corollary 2], Q(ζm) has an integral basis set B ⊆ ζZ
m such that1294

the usual action of H on ζZ
m restricts to a free action of H on B. This implies, as noted in1295

[29, page 281, top paragraph], that {trQ(ζm)
K β : β ∈ B} is an integral basis set for K .1296

These traces trQ(ζm)
K β for β ∈ B generalize the Gauss periods from Sect. 4.7. It seems1297

reasonable to refer to these generalized basis elements as Gauss periods: the periodicity is1298

immediately visible in the coefficients of each trace, thanks to H acting freely on B.1299

Nowrepresent elements ofK as linear combinations of theseGauss periods, generalizing1300

the case of prime m. So far this matches what is proposed in [29, Section 5]. What is not1301

addressed in [29] is how to multiply quickly.1302

Each input to multiplication is a polynomial g = g0 + g1x + · · · + gm−1xm−1 in1303

Z[x]/(xm − 1) representing g(ζm). This polynomial is not represented on the length-1304

m basis 1, x, . . . , xm−1, but rather on a basis of length just #(Z/m)∗/#H representing the1305

Gauss periods: the basis set is
{∑

c∈H xbc : b ∈ Z/m, ζ bm ∈ B
}
. In other words, gj = gjc for1306

all j ∈ Z/m and all c ∈ H , and gj = 0 when ζ jm is outside B.1307

Move as usual fromZ to a quotient ring R containing the primitive roots of 1 needed for1308

all FFTs that appear. Each input to multiplication is then a polynomial in R[x]/(xm − 1),1309

again represented on the basis set
{∑

c∈H xbc : b ∈ Z/m, ζ bm ∈ B
}
.1310

The critical point here is that theH symmetry in the x exponents passes directly through1311

every step in the generalization of Rader’s algorithm from Sect. 4.12.3, producing a gen-1312

eralized folded Rader FFT. For each positive divisor d ofm, the input group-ring element1313

Id = ∑
a∈(Z/d)∗ g(m/d)aa−1 has entries invariant under the action ofH on (m/d)(Z/d)∗, so1314

one replaces (Z/d)∗ with the corresponding quotient group, precomputing a folded ver-1315

sionofZd in that group. Similar comments apply to the inverse transform fromSect. 4.12.4.1316

4.12.6 Folding: cost analysis of the symmetric case1317

Note that sometimes B ∩ ζ (m/d)(Z/d)∗m = {} so d can simply be skipped in the forward1318

transform. For example, for a prime power m = pe, the basis B in Sect. 4.10 skips some1319

arc of 1/p of the circle; if the arc is chosen to contain 1 then d = 1 can be skipped.1320

For the casem = p, this leaves just d = p, which is why the folded Rader FFT in Sect. 4.81321

works exclusively with (Z/p)∗. On the other hand, skipping the arc is somewhat deceptive1322

when one tries to generalize; if e > 1 then one encounters powers of ζpe having different1323

orders. From this perspective, for the casem = p there is expository value in considering1324
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the entire circle—as in Rader’s original algorithm, which allows g0 �= 0, doing extra work1325

for a Rader of the lost arc.1326

For generalm, the construction of B in [29, Section 3] avoids any exponent divisible by1327

pordp m for any prime divisor p ofm; the construction reviewed in Sect. 4.10 also works this1328

way if one chooses the sets Ip,e in that section to contain 0. This ensures that the divisors1329

d ofm that appear are all divisible by radm. The tweaked inverse transform in Sect. 4.12.41330

makes the same guarantee.1331

If the starting conductor-mfieldK is a proper subfield ofQ(ζm) then requiring thedegree1332

n ofK to be smooth does not necessarilymean that the degree #(Z/m)∗ ofQ(ζm) is smooth.1333

Fortunately, what appears in convolution is not the group (Z/m)∗, but the quotient group1334

(Z/m)∗/H , which has cardinality n, and, more generally, quotients ((m/d)(Z/d)∗)/H hav-1335

ing cardinality dividing n, so each cardinality is smooth, giving fast convolution by the1336

algorithm of Sect. 4.12.1.1337

One also has to check that the total size of the groups ((m/d)(Z/d)∗)/H that appear is1338

n(log n)o(1). The point here is that the action of H on (m/d)(Z/d)∗ is free for d = radm1339

(since by assumption #H0 = 1 where H0 = H ∩ (1 + (radm)(Z/m))), and thus for each1340

positive divisor d ofm divisible by radm. Each element of the quotient ((m/d)(Z/d)∗)/H1341

thus corresponds to #H elements of (m/d)(Z/d)∗, and the sets (m/d)(Z/d)∗ are disjoint1342

subsets of Z/m as d varies, so the total size of the groups is at most �m/#H�. One has1343

m/#(Z/m)∗ ∈ (log n)o(1) as in Sect. 4.11, and #(Z/m)∗/#H = n.1344

Moving down through a tower of subfields with conductor m corresponds to moving1345

up through a tower of subgroups H of (Z/m)∗. If B is chosen so that the largest subgroup1346

H in the tower acts freely on B then the smaller subgroups in the tower will also act1347

freely on B. Moving from the basis for a smaller field to the basis for a larger field is1348

then simply repeating coefficients, and moving the other way (as in detKQ evaluation) is1349

removing redundant coefficients.1350

4.12.7 Folding: the almost-symmetric case1351

What happens if instead #H0 > 1? One then has #H0 = 2 by [29, Lemma 3(2)], with H1352

factoring as a direct product of H0 and another group H1, and [29, Lemma 4] constructs1353

a basis of K that is almost as symmetric as the Gauss periods. Part of the basis consists1354

of traces of the form trQ(ζm)
K ζ b; the other part consists of traces of the form trQ(ζm)

K1
ζ b =1355

(1/2) trQ(ζm)
K ζ b, where K1 is the fixed field of H1 and b is chosen to have trQ(ζm)

K1
ζ b ∈ K .1356

All of this relies on K having conductorm.1357

The easy approach to fast multiplication here is to represent the elements of K as1358

elements of the superfield K1, using only theH1 symmetry. This reduces to the symmetric1359

case handled above. This loses a factor 2 compared to the desired H symmetry, but this1360

loss is not visible at the level of detail of this section’s cost analyses;�(#H1) is the same as1361

�(#H ).1362

This approach shouldnotbe confusedwith representing the elements ofK as elements of1363

Q(ζm), losing the variable factor contemplated in Sect. 4.4. These representations coincide1364

only when K1 = Q(ζm), i.e., when K has half the degree of Q(ζm), i.e., when #H1 = 1.1365

It is instructive to look at the case #H1 = 1 more closely. The archetypal examples1366

are the following two half-degree subfields of a power-of-2 cyclotomic field Q(ζm) where1367

m ≥ 8:1368
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• The subfield fixed by σ−1, i.e., the real-cyclotomic field R ∩ Q(ζm).1369

• The subfield fixed by σm/2−1.1370

Both of these have conductorm, unlike the half-degree cyclotomic subfieldQ(ζm/2), which1371

is the subfield fixed by σm/2+1.1372

In the power-of-2 real-cyclotomic case, the almost-symmetric basis in [29, Lemma 4]1373

consists of the H-traces ζm + ζ−1
m , . . . , ζm/4−1

m + ζ
−m/4+1
m and one H1-trace ζm/2m = −1.1374

Because the H1 part of the basis is so short, one can productively use H-folded DFTs to1375

multiply the H-symmetric part of the first input by the H-symmetric part of the second1376

input, and then use schoolbook multiplication to handle the missing products.1377

4.13 Open questions1378

Multiquadratic fieldsK = Q(
√
d1,

√
d2, . . . ,

√
dt ) are Abelian. One can apply themachin-1379

ery fromSect. 4.12 to this case, starting bywriting
√
d1, . . . ,

√
dt in terms ofGauss periods.1380

However, themultiplication algorithm in [9, Section 3.3] is considerably simpler, mapping1381

Z to quotient rings Fp for which Fp[x1, . . . , xt ]/(x21 − d1, . . . , x2t − dt ) splits into 2t copies1382

of Fp. Can one efficiently handle arbitrary towers by the same technique?1383

(Note that [59] studied tower performance but did not specifically consider the base1384

ring Z, and in particular did not consider switching from Z to Fp for a suitably selected p.1385

It would also be interesting to investigate a switch to R or C, but using Fp has the virtue1386

of avoiding precision questions.)1387

One might think that the answer is “Yes, of course”. Start with R0 = Z and K0 = Q.1388

For j ∈ {1, 2, . . . , t}, select a monic irreducible polynomial ϕj ∈ Rj−1[xj], define Rj =1389

Rj−1[xj]/ϕj , and define Kj = Kj−1[xj]/ϕj . There are infinitely many primes p for which1390

• ϕ1 splits into linear factors in Fp[x1];1391

• ϕ2, with each of the roots of ϕ1 in Fp substituted for x1, splits into linear factors in1392

Fp[x2];1393

• etc.;1394

and then Fp[x1, . . . , xt ]/(ϕ1, . . . ,ϕt ) is isomorphic to Fn
p, where n = ∏

j deg ϕj . To com-1395

pute detKQ α for a small element α of the ring of integers O of K = Kt , multiply α by a1396

denominator D known to have DO ⊆ Rt , and then divide Dn out of detKQ Dα.1397

One obvious question is how large the denominator D is. For multiquadratics with1398

coprime squarefree d1, . . . , dt , denominator n = 2t suffices; what about other fields? But1399

this question doesn’t seem to matter much for performance, even though D appears to1400

an nth power in detKQ Dα: in deciding how large
∏

p p needs to be, one can disregard1401

the known divisor Dn of detKQ Dα and consider only the size of detKQ α. This is the non-1402

Archimedean version of a suggestion fromBelabas [10, Section 5.2]mentioned in Sect. 3.3,1403

namely using known divisors to limit the precision of complex embeddings.1404

Amoreworrisome question is how large p is. The standard proof that there are infinitely1405

many suitable primes p runs via Chebotarev’s density theorem. This theorem includes the1406

statement that the primes splitting completely in K have density 1/#G, where G is the1407

Galois group ofK . (An older density theorem due to Frobenius suffices here; see generally1408

[89].) Since the density is nonzero, there are infinitely many such primes. One might have1409

to skip primes that divide D, but there are only finitely many such primes. The density1410

provides enough information to formulate reasonable conjectures regarding the size of p.1411
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Fig. 3 Sage script to build a random-looking tower of fields of degrees 2, 4, 8, 16 and find the first 3
completely split primes in each field

The reason this question is worrisome is that Galois groups are generally huge. For1412

example, if n is prime then one expects degree-n fields to have #G = n!, and then one1413

expects p to have�(n log n) bits—which (1) raises the question of how to find such a p and1414

(2) forces cost n2+o(1) for n-coefficient multiplications. Requiring a smooth tower should1415

bias #G downwards, but how much?1416

Onemight guess that usually #G = 2n−1 for a degree-n field having a power-of-2 tower.1417

As a data point, Figure 3 builds a random-looking tower of fields of degrees 2, 4, 8, 161418

and prints out the first 3 primes that split completely in each field. These primes are1419

11, 13, 23 for degree 2; 61, 157, 181 for degree 4; 181, 647, 1907 for degree 8; and 1,331,339,1420

1,384,861, 1,570,633 for degree 16. For comparison, 97, 193, 257 split completely inQ(ζ32),1421

a cyclotomic field of degree 16.1422

For the case of K being Galois (whether or not Abelian), one has #G = n, so completely1423

split primes p appear with density 1/n. If the goal is to find n1+o(1) such primes, enough1424

primes to have�(n log n) bits in the product, then one can reasonably conjecture that the1425

maximum prime has only (2 + o(1)) log2 n bits. For weaker bounds assuming GRH, see,1426

e.g., [54, Section 2].1427

More needs to be done even in the Galois case: fast multiplication in each subfield1428

requires a tower representation that keeps coefficient sizes under control, avoiding the1429

blowups illustrated in Sect. 4.3. For the Abelian case, generalizing Gauss periods as in [29]1430

provides explicit small-coefficient integral bases for each field, and generalizing Rader’s1431

FFT as in this paper provides fast multiplication directly on these bases. Are there explicit1432

subfield-compatible integral bases supporting fast multiplication for Galois number fields1433

beyond Abelian fields?1434

Another open question is whether one can do better than n2+o(1) for a degree-nAbelian1435

field when n is prime. Perhaps one can achieve n1.5+o(1), analogously to how group struc-1436

ture is used to save an n0.5+o(1) factor in [28,79,90], and, in the elliptic case [20].1437

5 Enumerating small S-units1438

The primary motivation for this paper comes from the role of detKQ α computation inside1439

one of the fundamental tools in computational algebraic number theory: namely, passing1440
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all small elements α ∈ O, whereO is the ring of integers ofK , through a filter that outputs1441

the S-units α.1442

This section reviews parameter choices for this tool, applications of this tool, and the1443

conjectured performance of standard algorithms that work for arbitrary number fields1444

K . This section then analyzes the impact of speedups for the case of smooth-degree1445

cyclotomic fields K = Q(ζm).1446

5.1 Parameter choices1447

Beyond the choice of number fieldK , there is a choice of the set S. Typically an application1448

specifies K , whereas S is something for the algorithm designer to optimize.1449

The traditional objective in choosing S is to minimize the time required to find filtered1450

S-units that generate the S-unit group, i.e., the time required for a search of all small1451

elements of O to identify small S-units in O that generate the S-unit group. For each S,1452

the group generated by the filtered S-units is the full S-unit group once the search space1453

is large enough, i.e., once the bound on “small” elements of O is large enough; but this1454

raises a quantitative question of how large.1455

For simplicity, let’s take S specifically as ∞ ∪ {
P : #(O/P) ≤ y

}
, where ∞ is the set of1456

infinite places, P runs through nonzero prime ideals of O, and y is a parameter to be1457

optimized. For algorithms to compute S, see, e.g., [34, Sections 4.8.2 and 6.2].1458

A nonzero element α ∈ O is an S-unit if and only if the ideal αO has the form1459
∏

P:#(O/P)≤y Pe(P) for some function e :
{
P : #(O/P) ≤ y

} → N. The S-unit group is the set1460

of nonzero elementsα ∈ K such that the fractional idealαO has the form
∏

P:#(O/P)≤y Pe(P)
1461

for some function e :
{
P : #(O/P) ≤ y

} → Z.1462

For example, in the case K = Q, a nonzero rational number is an S-unit if and only1463

if it is y-smooth, i.e., has the form ±∏
p≤y pe(p). There is an extensive literature on the1464

distribution of y-smooth integers; for surveys see, e.g., [53,73,75]. If integers are chosen1465

independently and uniformly at random from the interval [1, H ] then (log y)2 is conven-1466

tionally chosen as (1/2 + o(1))(logH ) log logH , giving chance 1/y1+o(1) of y-smoothness1467

and giving total time1468

y2+o(1) = exp
((√

2 + o(1)
)
(logH )1/2 (log logH )1/2

)
1469

to find y1+o(1) integers that are y-smooth. See, e.g., [31, Theorem 10.1].1470

For general number fields, much less has been proven. It is still conventional to choose1471

(log y)2 ∈ (1/2 + o(1))(logH ) log logH , where now H is an estimate for the typical size1472

of detKQ α. Various applications are then conjectured to find y1+o(1) S-units in total time1473

y2+o(1). See [31, Section 10] for a review of several such conjectures. These conjectures1474

start from the heuristic that, in the words of [31, Section 10], “the auxiliary numbers1475

that ‘would be smooth’ are just as likely to be smooth as random integers of the same1476

approximate magnitude”.1477

The reason for asking for y1+o(1) S-units is that the rank of the S-unit group is #S − 1,1478

which, for reasonably large y, consists mainly of the number of finite places P in S. By1479

Landau’s prime-ideal theorem [65, Section 5], the number of P with #(O/P) ≤ y is (1 +1480

o(1))y/log y.1481

Some caution is required here. First, Landau’s theorem is a statement as y → ∞ for a1482

fixed K , not a statement regarding the conventional choice of y as K varies. Furthermore,1483

finding y1+o(1) S-units is not a guarantee of generating the full S-unit group. For the1484
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number field Q(
√
2,

√
3,

√
5,

√
1000003), a small search with some notions of smallness1485

will find only elements of Q(
√
2,

√
3,

√
5); Cohen gives a warning in [34, page 354, item1486

(3), last sentence] about small S-units not being “random”.1487

Ontheotherhand, experiments suggest that, for “balanced”numberfields suchasQ(ζm),1488

small filtered S-units avoid such conspiracies. See, e.g., Miller’s S-unit computation [70]1489

proving under GRH that R ∩ Q(ζ512) has class number 1.1490

The circular approximation in Sect. 2 says that weight-w elements of degree-n power-1491

of-2 cyclotomics have logH ≈ n(logw − γ )/2. The conventional choice of y then has1492

(log y)2 ∈ n1+o(1) under the mild assumption w ∈ nO(1). To understand more precisely1493

how large w should be, start from the standard conjectures mentioned above, which say1494

that one needs to search exp(n1/2+o(1)) ring elements to find enough S-units; and then1495

match this to the number of weight-w elements to see that w ∈ n1/2+o(1). Generating all1496

small ring elements means also using smaller values of w, but almost all of the filtered1497

S-units will be found with w ∈ n1/2+o(1), and almost all of the computation time is spent1498

with w ∈ n1/2+o(1). See also [1] for experiments with prime cyclotomics.1499

5.2 Applications1500

Filtering small ring elements to find small S-units has a long history. The traditional1501

application is to find fundamental invariants of O, such as the class group ClO and the1502

unit group O∗. If the filtered S-units generate the S-unit group then linear algebra on1503

the exponent vectors of the factorizations of S-units (the vectors e above) reveals the unit1504

group (S-units with trivial factorization, i.e., with e = 0) and, if S is large enough, the1505

class group (all integer vectors modulo the subgroup of “class-group relations”, i.e., the1506

subgroup of S-unit exponent vectors).1507

For details of this application, see, e.g., Cohen’s description in [34, Section 6.5]. Cohen1508

starts with a more general search that filters small elements of any ideal I to find S-1509

generators of I , and applies this to ideals I obtained as random products of small prime1510

ideals, but also, in [34, page 354, item (3)], mentions taking I = O as an “important1511

speedup”. For simplicity this section focuses on filtering small elements of O to find S-1512

units, but the speedups described below generalize easily to filtering small elements of any1513

I to find S-generators of I .1514

Starting a few decades ago (see [67]), filtering ring elements to find S-units took on1515

new importance as a critical subroutine inside NFS, the number-field sieve for integer1516

factorization. The number-field sieve is conjectured to factor any positive integer N into1517

primes in time at most exp((logN )1/3+o(1)); in this context logH ∈ (logN )2/3+o(1).1518

A much newer application is “filtered-S-unit attacks” against a problem that has arisen1519

in cryptography, namely finding very short elements of a “worst-case” ideal I , not just1520

the moderately short elements that one finds with, e.g., LLL. See generally [1,17,23]. The1521

simplest S-unit attacks start with an S-generator g of I with g ∈ I , and search for shorter1522

S-generators gu/v ∈ I where u and v come from a database of S-units. Filtered-S-unit1523

attacks build the database by filtering small elements of O, and are conjectured in [17,1524

page 47] to find very short elements (to be precise, “Hermite factor” at most n1/2+o(1); this1525

is overkill for the cryptographic applications) in subexponential time.1526

Class-group computations, unit-group computations, and NFS carry out linear algebra1527

on the S-unit exponent vectors. The conventional choice of y mentioned above tries to1528
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minimize the cost of finding S-units in the first place, without regard to the cost of linear1529

algebra. If linear algebra turns out to be the main bottleneck then algorithm designers1530

can and do improve overall algorithm performance by reducing y; see, e.g., [81, page 115,1531

bottomparagraph]. The cost of finding S-units is then easily visible in the overall algorithm1532

run time.1533

5.3 The standard filtering procedure1534

It is straightforward to enumerate all small elements of O for various reasonable notions1535

of “small”. For example, in Sect. 2, one can try all w up to some bound; for each w,1536

enumerate possibilities for a partition of w as a sum of n squares in nonincreasing order;1537

and, for each possibility, enumerate ways to assign the (positive and negative) square roots1538

to α0,α1, . . . ,αn−1. This rapidly generates small elements α ∈ O. The big problem is to1539

figure out which of these elements α are S-units.1540

The standard procedure (see, e.g., [34, page 491, step (6)]) computes N = |detKQ α| and1541

throws α away if N is not y-smooth. The point here is that if αO = ∏
P:#(O/P)≤y Pe(P)

1542

then N = ∏
P:#(O/P)≤y #(O/P)e(P); each #(O/P) is a prime power bounded by y, so N is1543

y-smooth.1544

As mentioned above, standard conjectures say that α is an S-unit with probability1545

1/y1+o(1) for the conventional choice of y, and thatN is y-smoothwithprobability 1/y1+o(1)
1546

for the conventional choice of y. This does not mean that these events are identical: if N1547

is y-smooth then the standard procedure still has to check whether α is in fact an S-unit.1548

Specifically, ifN is y-smooth, then, for each prime p dividingN , the standard procedure1549

runs through each P above p (each nonzero prime ideal P of O with p ∈ P) having1550

#(O/P) ≤ y, computes ordP α as in [34, Section 4.8.3], and checks whether this accounts1551

for the power of p in N . (The check is simpler if K is Galois: each P above p then has1552

the same #(O/P), so α is an S-unit if and only if, for each prime p dividing N , some P1553

above p has #(O/P) ≤ y.) Because N is y-smooth with probability only 1/y�(1), this is not1554

a bottleneck asymptotically; as Cohen puts it in [34, page 491], “this will be done quite1555

rarely and does not really increase the running time”.1556

5.4 Exploiting automorphisms1557

If α is an S-unit and σ is an automorphism of K then σ (α) is also an S-unit. Rather than1558

searching all small elements of O, one can search orbits of small elements under the1559

automorphism group of K . Typically “small” is defined in a way that is invariant under1560

automorphisms: for example, in Sect. 2, σ (α) has weight w if and only if α has weight w.1561

In particular, if K is Galois, then the automorphism group coincides with the Galois1562

group and has cardinality n = degK . There are two reasons that this does not imply a1563

speedup factor n; on the other hand, for typical examples, the speedup factor does end up1564

as�(n).1565

The first reason is that, for n > 1, some elements of K are in proper subfields and thus1566

have smaller orbits. For example, in Sect. 2, α = ∑
0≤j<n αjζ

j
m is in a proper subfield of K1567

if and only if αj = 0 for all odd j. However, this is increasingly rare as w grows.1568

The second reason is that one has to account for the cost of enumerating orbits. The1569

naive approach is to enumerate all small ring elements and then, for each element, try1570

applying automorphisms to see whether the element is an orbit leader (say, first in its orbit1571
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in lexicographic order as a vector on a specified basis). One expects to try only �(log n)1572

automorphisms on average for recognizing that an element isn’t an orbit leader. This1573

might sound fast enough for fields where applying an automorphism costs only n1/2+o(1)
1574

in sparse representation—but one wants small costs per orbit, not just small costs per1575

element. Simply writing down an element in sparse form usually costs n1/2+o(1), so writing1576

down all n elements in a size-n orbit usually costs n3/2+o(1). Evaluating detKQ α for the orbit1577

leader α costs more than this in Sect. 3 but less than this in Sect. 4.1578

In various concrete examples of interest, one can easily modify the generation of small1579

ring elements to more efficiently generate orbit leaders. For example, for power-of-21580

cyclotomics, an element α = ∑
0≤j<n αjζ

j
m outside all proper subfields can always be1581

conjugated to have α1 �= 0, so one can handle the degree-n/2 subfield recursively and then1582

limit the generation procedure to force α1 �= 0. This reduces the orbit-enumeration cost1583

by a factor n1/2+o(1) for w ∈ n1/2+o(1): each element has at most w nonzero positions, and1584

position j is moved to position 1 by at most two automorphisms. One can impose further1585

restrictions to further reduce the orbit-enumeration cost; see, e.g., how the cycloshort1586

module in [1] generates orbit leaders in the case of prime m, for orbits not just under1587

automorphisms but also under multiplications by ζm.1588

5.5 Exploiting subfields1589

Take again a weight-w integral element α in a degree-n power-of-2 cyclotomic field1590

K , and assume w ∈ n1/2+o(1). The circular approximation in Sect. 2 says that detKQ α1591

almost always has �(n log n) bits. Section 1 already explained how to compute detKQ α1592

in time n(log n)3+o(1) in this case using a tower of cyclotomic subfields, and Sect. 41593

explained how to reach this cost for any Abelian field whose degree is (log n)o(1)-smooth,1594

whereas the best non-subfield methods from Sect. 3 take time n2(log n)2+o(1). Combin-1595

ing this n/(log n)1+o(1) speedup with the �(n) automorphism speedup gives an overall1596

n2/(log n)1+o(1) speedup in the sequence of detKQ α computations.1597

Note that this is a speedup fromone type of algorithm to another,with both types applied1598

to power-of-2 cyclotomics: namely, a speedup from (1) general-purpose algorithms to (2)1599

algorithms exploiting automorphisms and subfields. The subroutines used for the general-1600

purpose algorithms to reach n2(log n)2+o(1) include complex FFTs exploiting the structure1601

of the roots of xm − 1; see Sect. 3.3. For a field such as Q[x]/(xn − x − 1) without this1602

structure, the best techniques in Sect. 3 cost n2(log n)3+o(1) except when the polynomial-1603

remainder sequence is particularly short, so moving from such a field to a power-of-21604

cyclotomic of the same degree gives an n2(log n)o(1) speedup. This speedup factor drops1605

to n2/(log n)1+o(1) if there is some way to reach cost n2(log n)2+o(1) for detQ[x]/(xn−x−1)
Q

. In1606

any case, given known techniques, it is clear that one should check the field structure, and1607

in particular should take advantage of automorphisms and subfields.1608

5.6 Better alternatives for limited-dimension search spaces1609

NFS uses number fields that, compared to cyclotomics with the same size of H and the1610

same size of y, have relatively low degree and relatively high discriminant. Quantitatively,1611

the NFS field degree is only (log y)1+o(1) rather than (log y)2+o(1). Furthermore, small ring1612

elements in NFS are tilted towards having a small number of coefficients. Most of the NFS1613

literature considers just two integer coefficients (α0,α1) of an element α = α0 + α1θ of1614
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a selected number field Q(θ ), with a search space of y2+o(1) elements defined by a range1615

of y1+o(1) choices of α0 and a range of y1+o(1) choices of α1; see, e.g., [31, Algorithm 11.1,1616

Step 3].1617

In this setting, one can fix α1 and view detKQ α as a polynomial in the integer α0. One can1618

write down successive polynomial values using repeated differences or using asymptot-1619

ically faster multipoint-evaluation subroutines. NFS algorithm statements usually avoid1620

writing down these values in the first place: instead they observe that the values of α01621

for which detKQ α is divisible by p consist of a small number of arithmetic progressions1622

modulo p, and simplymark those positions in an array indexed by α0, assuming free access1623

to RAM. See, e.g., [31, page 57]. This Eratosthenes-like sieving procedure accounts for the1624

“sieve” part of the name of NFS.1625

To limit RAM usage, more advanced versions of NFS limit the size of p found in this1626

way; they then write down detKQ α and switch over to “cofactorization” to find larger p.1627

This does not mean that detKQ evaluation is a bottleneck: these versions of NFS carry1628

out cofactorization only on the occasions that the product of small p found is above a1629

specified cutoff. With this type of “early abort”, NFS is not carrying out a full search for1630

all small S-units; but the requirement of having many small p, like the requirement of1631

having small coefficients, is algebraically compatible with finding the full S-unit group,1632

and analytically is conjectured to have similar smoothness probabilities. Such conjectures1633

are again provable for Q; see Pomerance’s early-abort analysis in [81, Section 4].1634

Sometimes theNFS literature considers two-dimensional lattices of integer pairs (α0,α1)1635

for which detKQ α is divisible by p; see, e.g., [80]. One can also consider NFS variants with1636

three ormore coefficients in α, but normally NFS takes fields where the size of θ j increases1637

rapidly with j, so one would expect the optimal lattice dimension to be small; the question1638

of whether three coefficients are useful in NFS appears in, e.g., [15, fourth slide, bottom1639

two lines].1640

The literature on class-group computation often considers fields of low degree with1641

large coefficient ranges as in NFS, but it also considers fields of high degree with small1642

coefficient ranges such as cyclotomics. The literature on S-unit attacks focuses on high-1643

degree fields such as cyclotomics. As the lattice dimension increases and the allowed1644

coefficient size decreases, it seems to become more and more difficult to quickly identify1645

small ring elements in a lattice of ring elements divisible by p, except when p is very small.1646

Fast detKQ evaluation plays an obvious role in these applications when K has high degree.1647

5.7 Exploiting more cyclotomic structure1648

A useful step in computing the structure of the cyclotomic field Q(ζm) is to compute the1649

structure of the real-cyclotomic field R ∩ Q(ζm), which has half the degree ifm ≥ 3.1650

For the unit group of R ∩ Q(ζm), one can instantly write down generators of a full-rank1651

subgroup, the group of “cyclotomic units”. These generators are also rapidly found by a1652

search of small ring elements.1653

For example, the set of cyclotomic units is ζZ
m

∏
c∈{1,3,...,m−1}(1 + ζ cm + ζ−c

m )Z in the1654

power-of-2 case. The group of cyclotomic units is conjectured to be the full unit group in1655

this case. See [23, Appendix C] for a review of evidence for this conjecture.1656

For general m, there is often a gap between the group of cyclotomic units and the full1657

unit group. To test whether the index is divisible by a given prime �, one can use order-�1658
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characters to see whether there are products of powers of generators of the known group1659

that are �th powers of units outside the group; if so, one can adjoin the �th roots and repeat.1660

(This procedure is often called “�-saturation” in the context of unit-group computation.)1661

After checking all small primes �, one can reasonably hope that the full unit group is1662

known.1663

To confidently obtain the class group of R ∩ Q(ζm), the literature uses filtered S-units,1664

as in [70]. For any number field, confirming the class number also confirms the full unit1665

group by analytic techniques. For R ∩ Q(ζm) wherem is a prime power, these techniques1666

boil down to Kummer’s theorem that the class number of R ∩ Q(ζm) is the index of the1667

cyclotomic units inside the full group of units. See, e.g., [94, Theorem 8.2], and see [88]1668

for a generalization to anym.1669

Starting from the units of R ∩ Q(ζm), one obtains the units of Q(ζm) by adjoining ζm1670

and, form not a prime power, 1 − ζm; see [94, page 40]. There is also a standard easy-to-1671

compute formula for the class number ofQ(ζm) in terms of the class number ofR∩Q(ζm);1672

see [94, Theorem 4.17]. For p-units, meaning S-units where the finite places in S are the1673

prime ideals over p, one can efficiently move from the p-units of R ∩ Q(ζm) to the p-units1674

of Q(ζm) by adjoining Jacobi sums and then taking square roots (2-saturation); see [17].1675

For further S-units of Q(ζm), filtering appears in [17, page 47] and [1].1676

In short, cyclotomics makemany computations easier, but filtering continues to play an1677

important role: filtering gives S-units of R ∩ Q(ζm), cyclotomic structure then gives the1678

p-units of Q(ζm), and further filtering gives further S-units of Q(ζm).1679

5.8 Comparison to the cost of smoothness detection1680

Onemight think that checking the y-smoothness ofN = detKQ α is, at least asymptotically,1681

much more expensive than computing N in the first place. ECM is conjectured to use1682

exp((
√
2+o(1))(log y)1/2(log log y)1/2) multiplications modN ; early-abort ECM from [22,1683

Section 3] is conjectured to replace
√
2 with

√
8/9; either way, the cost is exponential in1684

n1/4+o(1) when log y ∈ n1/2+o(1).1685

However, one can merge smoothness tests of many integersN , even without the visible1686

structure from Sect. 5.6. Specifically, if Y is a finite set of primes and S is a finite sequence1687

of positive integers then the batch smoothness-detection algorithm from [14] uses—1688

assuming free RAMaccess—O(B(log B)2+o(1)) bit operations to find all Y -smooth integers1689

in S (integers that factor into the primes in Y ), where B is the total number of bits in Y1690

and S. A closer look shows that if one plugs in the Harvey–van der Hoeven integer-1691

multiplication algorithm [56] then the number of bit operations is O(B(log B)2).1692

In particular, take Y = {
p : p ≤ y

}
; then Y has �(y) bits. Assume that S has �(y)1693

integers, each having �(n log n) bits. Then B ∈ �(yn log n). The conventional choice of y1694

has log y ∈ �(n1/2 log n), so the cost O(B(log B)2) is O(yn2(log n)3), i.e., O(n2(log n)3) per1695

integer.1696

This analysis suggests that, with optimized subroutines for general number fields, detKQ1697

evaluation and batch smoothness detection are balanced—up to a constant factor, which1698

could point in either direction—in the number of bit operations. Saving a constant factor1699

in detKQ evaluation thusmakes the entire S-unit search faster by a constant factor. This does1700

not require the work in Sect. 4—the improvement in Sect. 3.3 from n2(log n)3 to n2(log n)21701
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for cyclotomics is enough—but further speedups in detKQ evaluation, as in Sect. 4, make it1702

easier to see speedups in batch smoothness detection.1703

Understanding the real-world impact of these speedups for concrete sizes requires a1704

much more detailed analysis and optimization of S-unit searches. As an example of the1705

issues that will arise, the real costs of RAM are a bigger problem for batch smoothness1706

detection than for detKQ evaluation.On the other hand, rather than takingY = {
p : p ≤ y

}
,1707

one can take Y as the set of primes p where some P over p has #(O/P) ≤ y. This is1708

particularly effective in theGalois case, reducing #Y by a factorn+o(n), which also reduces1709

RAM requirements by a factor n + o(n). The same change of Y speeds up conventional1710

trial division. Cyclotomics also provide some speedup for Pollard’s ρ method (use the1711

iteration polynomial xm + c) and Pollard’s p−1 method (if p ∈ 1+mZ then p−1 is more1712

likely to factor appropriately), although much less speedup for ECM.1713

Finally, note that working with orbits under the Galois group as in Sect. 5.4 speeds up a1714

sequence of smoothness tests by the same�(n) factor that it speeds up a sequence of detKQ1715

evaluations: there are thatmany fewerN values to handle. It is clear that known algorithms1716

for S-unit searches are much faster for cyclotomics than for unstructured number fields;1717

the only question is how much.1718
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Appendix A: software to check the Gauss-period algorithms1727

An open-source software package abelianfields is available from [18] for various1728

tests that the main algorithms described in this paper work as specified. This appendix1729

describes the software.1730

A.1: software readability1731

The idea that a test of software S is also a test of algorithm A relies implicitly on the1732

idea that there is a match between S and A. Helping readers check this match was a high1733

priority in the development of the abelianfields software package. This has three1734

important consequences.1735

First, this software is written in a high-level language, specifically Sage. This has the1736

disadvantage of incurring Sage overhead for each step. This is a large slowdown when1737

one step is an arithmetic operation in a small finite field, as in Sect. 4.12.2. The software1738

does not attempt to show what can be done in reducing overhead per ring operation. See1739

Appendix B for further software illustrating ways to streamline detKQ evaluation in the case1740

of power-of-2 cyclotomic fields K , using a lower-level language.1741

Second,abelianfieldsuses straightforward subroutines for precomputations.Here1742

“precomputations” refers to algorithm steps that depend only on the number field and the1743
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number of input bits, independently of the specific input at hand. The paper’s performance1744

evaluation assumes that the results of these precomputations are cached, and that there are1745

enough inputs that the cost of the precomputations does notmatter; consequently, various1746

speedups in the precomputations, such as known techniques to accelerate the search1747

for prime fields with appropriate primitive roots of 1, are simply ignored. The software1748

makes a few exceptions for subroutines that seemed likely to cause scaling problems for1749

experiments and that were easy to rewrite in faster ways.1750

Third, within themain computation, various standard speedups are suppressed because1751

they would compromise readability. For example, FFTs are not cached; software prioritiz-1752

ing speed would include FFT caching, even though this does not affect the n(log n)3+o(1)
1753

asymptotic. As another example, the software includes not just tests of its main functions,1754

but also many assertions inside the functions to highlight assumptions and conclusions;1755

eliminating assertions is a standard speedup.1756

A.2: basic subroutines1757

The following low-level functions insideabelianfields are used in variousways inside1758

the convolution functions described in Appendix A.3, the prime-conductor det func-1759

tions described in Appendix A.4, and the general-conductor det functions described in1760

Appendix A.5:1761

• primitive.root_remember, given a ring R, a positive integer n, and a primitive1762

nth root of 1 inR, caches that root for future reference. The caching does not currently1763

move across pairs (R, n), for example to obtain a primitive nth root by squaring a1764

previously cached primitive 2nth root.1765

• primitive.root returns a primitiventh root of 1 inR, givenR andn. This function1766

tries to find and cache a primitive nth root if one has not been previously specified by1767

primitive.root_remember; this search is fast when R is a prime field.1768

• units.generator, given m, returns a deterministically selected generator of1769

(Z/m)∗, if (Z/m)∗ is cyclic.Note that applyingprimitive.root to inputsR = Z/m1770

and n = #(Z/m)∗ often differs from this: for example, (Z/4)∗ has a generator 3, but1771

Z/4 does not have a primitive 2nd root of 1.1772

• tree.producttree and tree.remainders are product-tree/remainder-tree1773

subroutines. These are copied from [21], except for minor tweaks to upgrade to1774

Python 3.1775

• tree.interpolate is an analogous interpolation-tree subroutine. (Sage’s built-in1776

CRT function provides the same results as tree.interpolate aside from details1777

of how inputs are arranged, but uses an algorithm that scales quadratically in most1778

cases. This difference is outside this paper’s algorithm analysis, since interpolation is1779

used only in precomputation.)1780

• auxmodulus.prime, given B and n, returns the smallest prime number in1781

{B, B + 1, B + 2, . . .} ∩ (1 + nZ).1782

• auxmodulus.product, given B and n, returns an integer M ≥ B and a sequence1783

P of distinct prime numbers in 1 + nZ having product M. This function also uses1784

primitive.root_remember to remember a primitive nth root of 1 in Z/M,1785

obtained from interpolating (via tree.interpolate) primitive nth roots of 1 in1786

Z/p across p in P. Currently the prime numbers in P are chosen as the smallest prime1787
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numbers in 1 + nZ, with the search stopping once the number of bits in the prime1788

numbers minus the number of primes is at least the number of bits in B. More work1789

would usually bringM somewhat closer to B.1790

The general-conductor det functions also rely on various further manipulations of sub-1791

groups and quotient groups of (Z/m)∗, which are abstracted by units as follows:1792

• units.group, given m, returns the group (Z/m)∗. This group supports elements1793

(see units.element below), iteration, and the following functions:1794

– cardinality returns #(Z/m)∗.1795

– modulus returnsm.1796

– gens returns a vector of independent generators of (Z/m)∗. Calling this function1797

repeatedly always returns the same vector.1798

– ngens returns the number of generators returned by gens.1799

– gens_orders returns a vector showing the order of each generator returned1800

by gens.1801

– ring returns Z/m, represented as Sage’s Zmod(m).1802

– subgroup_1mod, given apositivedivisord ofm, returns thekernel (represented1803

as a units.subgroup; see below) of the natural map from (Z/m)∗ to (Z/d)∗.1804

Internally, this uses a trivial enumeration of (Z/m)∗ for simplicity; one can do1805

better for largem.1806

• units.element, given (Z/m)∗ (represented as a units.group) and an element1807

of Sage’s Zmod(m) or ZZ coprime to m (or, alternatively, an exponent vector on1808

units.group(m).gens()), returns an element of (Z/m)∗, with support for all1809

of Sage’s AbelianGroupElement features (e.g., multiplication and exponents)1810

and the following extra functions:1811

– modulus returnsm.1812

– inring returns the corresponding element of Zmod(m).1813

– reduce, given a positive divisor d ofm, returns the element of (Z/d)∗ obtained1814

by feeding this element of (Z/m)∗ through the natural map from (Z/m)∗ to1815

(Z/d)∗.1816

• units.subgroup, given m and g1, g2, . . . ∈ (Z/m)∗, returns the subgroup H of1817

(Z/m)∗ generated by g1, g2, . . . . This subgroup supports elements (as elements of1818

(Z/m)∗), iteration, and the following functions:1819

– cardinality returns #H .1820

– modulus returnsm.1821

– gens, ngens, and gens_orders are as above, but for independent generators1822

of H rather than independent generators of (Z/m)∗.1823

– fullgroup returns (Z/m)∗.1824

– quotient returns the quotient group (Z/m)∗/H , represented as a1825

units.quotient (see below).1826

– reduce, given a positive divisor d ofm, returns the subgroup of (Z/d)∗ obtained1827

by feeding H through the natural map from (Z/m)∗ to (Z/d)∗.1828
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– extend, given a vector of elements of (Z/m)∗, returns the subgroup generated1829

by H and those elements.1830

– intersect, given a subgroup H ′ of (Z/m)∗, returns H ∩ H ′.1831

– is_subgroup_of, given a subgroup H ′ of (Z/m)∗, returns True if H is a sub-1832

group of H ′, else False.1833

– representatives_mod, given a subgroupH ′ ofH (as a subgroup of (Z/m)∗),1834

returns representatives in (Z/m)∗ of the quotient H/H ′.1835

– conductor returns the conductor of H .1836

– is_radfree returns True if H is rad-free, meaning that H acts freely on1837

(Z/radm)∗.1838

– is_friendly returns True ifH is friendly, meaning that (1)m is divisible by 81839

and all elements of H are 1 modulo 4 or (2)m is not divisible by 8.1840

• units.quotient, givenm and a subgroupH of (Z/m)∗, returns the quotient group1841

Q = (Z/m)∗/H . This quotient group supports elements (see1842

units.quotientelement below), iteration, and the following functions:1843

– cardinality returns #Q.1844

– modulus returnsm.1845

– gens, ngens, gens_orders are as above, but for independent generators of1846

Q.1847

– fullgroup returns (Z/m)∗.1848

– denominator returns H .1849

• units.quotientelement, given Q = (Z/m)∗/H as above and an element of1850

(Z/m)∗ (or, alternatively, an exponent vector on Q.gens()), returns an element of1851

Q, with support for all of Sage’sAbelianGroupElement features and the following1852

functions:1853

– lift returns a preimage of this element under the natural map from (Z/m)∗ to1854

Q.1855

– reduce, given a positive divisor d of m, returns the element of (Z/d)∗/H1856

obtained by feeding this element of Q through the natural map from (Z/m)∗/H1857

to (Z/d)∗/H .1858

Sage has a built-in Zmod(m).unit_group() that supports some of the above fea-1859

tures; abelianfields uses Zmod(m).unit_group() for some tests, and also tests1860

units.subgroup.conductor against PARI’s computation of conductors of fixed1861

fields of subgroups of the Galois group of Q(ζm).1862

A.3: convolution functions1863

The convolutionmodule inside abelianfields handles the standard convolution1864

techniques from Sects. 4.12.1 and 4.12.2:1865

• convolution.multi_fft evaluates an isomorphism to Rn from the ring S =1866

R[x1, x2, . . . , xt ]/(xd01 − xe00 , . . . , xdt−1
t − xet−1

t−1 ), given a ring R, a primitive nth root ζ1867

of 1 in R, a unit x0 in R, a list d of t positive integers with product n, and a list e of1868
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t nonnegative integers where n divides e0 if t ≥ 1. This function also supports an1869

optional reverse=True argument that inverts the isomorphism.1870

• convolution.multimultiplies in the above ring S.1871

• convolution.multi_cyclicmultiplies in S in the case e0 = e1 = · · · = et−1 =1872

0.1873

• convolution.cyclic is the case t = 1, multiplying in R[x]/(xd − 1).1874

The convolution.multi_fft and convolution.multi functions leave it to the1875

caller to handle replacing di with p, di/p for speed when di is composite and p is a1876

prime divisor of di. The *cyclic* functions, which are the functions used elsewhere in1877

abelianfields, handle this replacement automatically.1878

By default, the *cyclic* functions require R to be Z or Z/M, and do not require R to1879

contain a primitive nth root of 1. These functions automatically decompose large coeffi-1880

cients into elements of a small prime field Z/p, saving a logarithmic factor as described1881

in Sect. 4.12.2. Presumably handling this by segmentation, as in Sect. 4.8.5, would be1882

noticeably faster for small t, and in particular for convolution.cyclic.1883

The *cyclic* functions also support a guaranteed_primitive=True option1884

that requires R to contain a primitive nth root of 1; in this case R is not required to be Z1885

or Z/M. Currently guaranteed_primitive=True also disables decomposing large1886

coefficients into elements of a small prime field.1887

A.4: functions for prime-conductor fields1888

The prime module inside abelianfields handles number fields of odd prime con-1889

ductorp, alongwithQ. Someof the functions in thismodule provide size-pFFTalgorithms1890

and, more generally, folded Rader FFTs for positive divisors d of p − 1:1891

• prime.complete is a size-p DFT. This function is given a ring R, an odd prime1892

number p, a primitive pth root ζ of 1 in R, and the coefficients g0, g1, . . . , gp−11893

of a polynomial g = g0 + g1x + · · · + gp−1xp−1 ∈ R[x]; this function returns1894

g(1), g(ζp), . . . , g(ζ
p−1
p ). Internally, this function implements Rader’s original FFT1895

algorithm reviewed in Sect. 4.8.1. This function is not used elsewhere; it is provided1896

as a baseline algorithm for comparison.1897

• prime.folded takes R, p, ζ , a positive integer d dividing p − 1, and d coef-1898

ficients g0, g1, . . . , gd−1 representing the d-periodic polynomial g = ∑
j gj(xω

−j +1899

xωd−j + · · · + xωp−1−d−j ) where ω is units.generator(p). This function returns1900

g(ζω0 ), . . . , g(ζωd−1 ). Internally, this function uses the folded Rader algorithm1901

reviewed in Sect. 4.8.3, so it is simply a length-d cyclic convolution with a pre-1902

computed vector. The largest case, d = p − 1, is close to prime.complete, but1903

prime.complete allows nonzero constant coefficient, also evaluates at 1, and has1904

a different order of inputs and outputs.1905

• prime.folded_inverse inverts prime.folded for any particular (R, p, ζ , d).1906

See Sect. 4.8.4 for the algorithm.1907

All of these functions currently require R to be Z or some Z/M, and internally use1908

convolution.cyclic.1909

Further prime functions operate on elements of Zd , representing d-periodic polyno-1910

mials over Z, representing (integral) d-periodic elements of Q(ζp), meaning elements of1911
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the degree-d subfield of Q(ζp). Note that, in particular, the element (z, z, . . . , z) ∈ Zd
1912

represents the element −z of Q(ζp). Each function is given p and d along with the further1913

inputs described below:1914

• prime.multiply takes two elements of Zd representing d-periodic elements1915

α,β ∈ Q(ζp), and returns an element of Zd representing αβ . Internally,1916

prime.multiply computes an easy bound on the absolute coefficients of αβ ;1917

uses auxmodulus.product to choose a modulus M above twice this bound with1918

a primitive pth root of 1 in Z/M; and finishes with two length-d folded DFTs over1919

Z/M, d multiplications in Z/M, and one length-d inverse folded DFT over Z/M.1920

Each folded DFT boils down to one length-d cyclic convolution with a precomputed1921

sequence.1922

• prime.subfield takes a positive integer d2 dividing d, and an element of Zd rep-1923

resenting a d-periodic elementα ∈ Q(ζp). It returns an element ofZd2 representingα,1924

if α is d2-periodic. In other words, it extracts the first d2 entries of the input sequence,1925

if the input sequence is d2-periodic.1926

• prime.conjugate takes an integer e, and an element of Zd representing a d-1927

periodic element α ∈ Q(ζp). It returns an element of Zd representing σ (α), where1928

σ is the unique automorphism of Q(ζp) mapping ζp to ζω
e

p , where again ω is1929

units.generator(p). In other words, prime.conjugate rotates the input1930

sequence to the left by e positions.1931

• prime.det_relative evaluates the determinant map from the degree-d sub-1932

field of Q(ζp) down to the degree-d2 subfield of Q(ζp), where d2 is a positive inte-1933

ger dividing d. This function takes d2 and an element of Zd representing a d-1934

periodic element α ∈ Q(ζp), and returns an element of Zd2 . Internally, this function1935

includes two implementations (tested against each other): the default implementa-1936

tion saves time by pushing conjugation and subfield extraction through the DFTs1937

as explained in Sect. 4.8.6, but there is also a simpler reference implementation,1938

enabled by ref=True, that multiplies conjugates by calling prime.conjugate1939

and prime.multiply as black boxes.1940

• prime.det_absolute evaluates the determinant map from the degree-d subfield1941

of Q(ζp) down to Q. Internally, this function automatically factors d into primes1942

and repeatedly applies prime.det_relative. One could alternatively modify1943

prime.det_relative to internally perform this factorization; either way, the1944

factorization is essential for the speed of this paper’s algorithms.1945

A.5: functions for arbitrary-conductor fields1946

The general module inside abelianfields has a similar structure to the prime1947

module but supports arbitrary conductor. Some of the functions provide the construction1948

from [29, Section 5] of an H-normal basis:1949

• general.normalbasis, given a rad-free subgroup H of (Z/m)∗, returns B/H1950

and a list of rewrite rules. Here B is anH-normal integral basis of Q(ζm) consisting of1951

roots of 1, and the rewrite rules specify how to rewrite arbitrary roots of 1 in terms1952

of B. Internally, the rewriting follows the construction from [97] and [26] reviewed in1953

Sect. 4.10.1954
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• general.canonicalize expresses an H-periodic polynomial as an H-periodic1955

polynomial on the basisB fromgeneral.normalbasis, rewriting any other expo-1956

nents that appear. The input and output use exponents in (Z/m)/H having additive1957

order divisible by radm; the output is guaranteed to be supported on B, which is1958

automatic ifm is squarefree but not for generalm.1959

• general.from_conventional also produces an H-periodic polynomial on the1960

basisB, but takes input in its conventional (notH-folded) formas a list ofm exponents,1961

with no requirements on the additive order.1962

Some of the functions provide generalized Rader FFTs and generalized folded Rader FFTs:1963

• As awarmupwithout folding,general.primitive is a primitive size-mDFT.This1964

function is given a ring R, a positive integerm, a primitivemth root ζ of 1 in R, and the1965

coefficients g0, g1, . . . , gm−1 of a polynomial g = g0+g1x+· · ·+gm−1xm−1 ∈ R[x]. This1966

function returns g(ζ c) for each c ∈ {0, 1, . . . , m − 1} with gcd{c,m} = 1. Internally,1967

this function uses the generalized Rader FFT from Sect. 4.12.3.1968

• general.primitive_inverse is an inverse primitive size-m DFT. Internally,1969

this uses the inversion algorithm (and tweak) from Sect. 4.12.4.1970

• general.folded is an H-folded DFT, as in Sect. 4.12.5. This function is given1971

R, m, ζ , a subgroup H of (Z/m)∗, and an H-periodic polynomial; it evaluates the1972

polynomial at ζ c for each c in (Z/m)∗/H . The subgroup H is required to be rad-free.1973

• general.folded_inverse is an inverse H-folded DFT.1974

Finally, as in prime, there are further functions to operate on H-periodic polynomials1975

over Z, representing elements of the subfield of Q(ζm) fixed by H . Each function is given1976

m and H along with the further inputs described below:1977

• general.multiply takes two H-periodic polynomials f, g and returns fg . Inter-1978

nally, this uses H-folded DFTs.1979

• general.conjugate takes an element c ∈ (Z/m)∗ and anH-periodic polynomial1980

f , and returns σc(f ), where σc is the unique automorphism of Q(ζm) mapping ζm to1981

ζ cm.1982

• general.subfield changes representation from the subfield K of Q(ζm) fixed by1983

H to the subfield F of Q(ζ�) fixed by a subgroup S of (Z/�)∗, where F ⊆ K , assuming1984

the input represents an element of F . This function takes as input a subgroup H2 of1985

(Z/m)∗ containing H ; the function defines � as the conductor of H2, and S as the1986

reduction ofH2 to (Z/�)∗. This function also takes as input anH-periodic polynomial1987

f , and produces as output an S-periodic polynomial. The exact set of pairs (H, S)1988

supported by this function has a complicated description from details of how the1989

function steps through conductors and subgroups; both H and S are required to be1990

rad-free, and none of the default abelianfields tests include any cases where this1991

condition is insufficient.1992

• general.det_relative has the same input-output format as1993

general.subfield but evaluates detKF rather than evaluating the identity map on1994

F . Internally, this function simplymultiplies conjugatesusinggeneral.conjugate1995

and general.multiply.1996
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• general.det_absolute takes an H-periodic polynomial representing an ele-1997

ment α of the subfield K of Q(ζm) fixed by H , and returns detKQ α. This function1998

requires H to be friendly.1999

Asubroutinegeneral.tower constructs the towerused ingeneral.det_absolute.2000

Internally, general.tower starts with (Z/m)∗ and builds a chain of subgroups down2001

towards H . It tries to insert one prime at a time into the field degree so as to obtain a2002

maximum-length tower, but, form ∈ 8Z, sometimes intersects the current subgroup with2003

1 + 4Z to preserve the rad-free condition, in effect losing one degree-2 step in the tower.2004

There is no attempt in general.tower to search for alternative chains.2005

A.6: output of the tests2006

Running all internal abelianfields tests on Linux systems with Sage installed is a2007

simplematter of typingmake in thepackagedirectory.Variousnotes are printed regarding2008

which test size is in progress, but not regarding all the individual tests.Any failure is printed2009

as a Sage assertion failure.2010

Along with correctness tests, the tests of the primemodule include reporting, for each2011

small prime p, the sizes of convolutions used in computing determinants down toZ of five2012

random small elements of Z[ζp], specifically elements with
⌈
(p − 1)1/2

⌉
coefficients ±12013

and all remaining coefficients 0. For example, a typical computation for p = 29 involved2014

convolutions of lengths 28 (for a forward DFT) and 14 (for an inverse DFT) over Z/M2015

where M has 14 bits, convolutions of lengths 14 and 7 over Z/M where M has 23 bits,2016

and convolutions of lengths 7 and 1 over Z/M where M has 83 bits, as reflected by the2017

following output line:2018

p 29 totalbits 1735 Mbits,n: 14,28 14,14 23,14 23,7 83,7 83,12019

The product ofM bits and n adds up to 1735 in this example. Sizes can vary from one ele-2020

ment to another; see generally Sect. 2. To skipmost tests and simply see these convolution2021

sizes, one can run make sagelibs and then, inside Sage, run the following, although2022

this still tests the results against Sage’s resultant subroutine:2023

import prime2024

prime.test_sizes(29)2025

The totalbits quantity is not monotonic in p: for example, the quantity is typically2026

9090 or 9480 for p = 59 and typically just 3099 or 3177 or 3249 for p = 61, reflecting the2027

fact that Q(ζ61) has a much nicer tower than Q(ζ59) does.2028

Five experiments with p = 193 = 1+3 ·26 had totalbits being 16739, 17157, 17168,2029

17228, 16859; five experiments with p = 769 = 1 + 3 · 28 had totalbits being 83286,2030

83368, 82804, 82962, 82964. The 5× growth in totalbits from p = 193 to p = 769 is,2031

as expected, slightly larger than the 4× growth in p: the number of tower levels is growing2032

logarithmically, and one expects another near-logarithmic factor for reasons explained in2033

Sect. 2.2034

(Similar comments apply to the general module, with larger sizes since general2035

does not push conjugation and folding throughDFTs. For example, five experiments from2036

general.test_sizes(193) had totalbits being 36981, 36711, 38196, 36981,2037

35703, and five experiments from general.test_sizes(769) had totalbits2038

being 176103, 212355, 176922, 176103, 176067.)2039

Journal: 40993 Article No.: 0402 TYPESET DISK LE CP Disp.:2023/3/4 Pages: 58 Layout: BMC-OneCol



un
co

rr
ec

te
d 

pr
oo

f

_####_ Page 54 of 58 D. J. Bernstein Res. Number Theory_#####################_

Beyond totalbits, there is a third logarithmic factor in the run time of this paper’s2040

algorithm, reflecting the cost of convolution per bit. However, one cannot expect to see2041

this logarithmic factor in wall-time measurements for this software. Operations in the2042

small prime fields in Sect. 4.12.2 have inherent cost growing with the size of the prime2043

(which is also roughly logarithmic, with some bumps for the distribution of primes), but2044

in Sage the cost is instead dominated by prime-independent overhead. Wall time was2045

monitored experimentally as a sanity check (with repeated runs so that precomputations2046

were cached) and grew approximately 5× from p = 193 to p = 769, but this should not2047

be taken as a predictor of the wall-time ratio for optimized software.2048

Appendix B: faster software for the case of power-of-2 cyclotomics2049

For the numerical example α = 3 + ζ 2712048 + 4ζ 8282048 with K = Q(ζ2048), Sect. 1 compared2050

the performance of traditional detKQ α computation—namely 0.21 × 109 cycles via PARI,2051

or 0.15 · 109 cycles via NTL—to the performance of exploiting a tower of subfields of2052

K—more than 10× faster, namely 0.011 × 109 cycles.2053

Acloser look shows that this underestimates the speed advantage of exploiting a tower of2054

subfields. The overhead in Python and Sage for computing g(−x), extracting coefficients,2055

etc. turns out to account for most of the 0.011 × 109 cycles. This issue is essentially2056

nonexistent for the scripts usingPARI andNTL: those scripts are bottleneckedby resultant2057

subroutines written in C.2058

This appendix describes cyclo2power (available from [19] as an accompaniment to2059

this paper), an open-source library to compute detKQ α for integral elements α of power-2060

of-2 cyclotomic fields K . The library is written in C and, like NTL and PARI, uses GMP2061

[52] for integer arithmetic. For the numerical example from Sect. 1, cyclo2power uses2062

just 0.0012 × 109 cycles on the same machine, more than 100× faster than NTL.2063

B.1: representing polynomials as integer values2064

Segmentation (sometimes called “Kronecker substitution”), also used in Sects. 3.3, 4.2,2065

and 4.8.5, multiplies two polynomials f, g ∈ Z[x] by multiplying the integers f (ρ), g(ρ).2066

Here ρ ∈ Z is chosen to be a power of 10 for traditional hand computation or a power of2067

2 for software, so it is easy to read off the coefficients of h = fg from the digits or bits of2068

h(ρ). One can think of the integers f (ρ), g(ρ), h(ρ) as representations of the polynomials2069

f, g, h respectively.2070

For example, one way to multiply 3x2 + x+4 by 2x2 +7x+1 is to choose ρ = 1000 and2071

multiply the integers 3001004 and 2007001, obtaining the integer 6023018029004, from2072

which one easily reads off the polynomial product 6x4 +23x3+18x2+29x+4. Of course,2073

for this to work, ρ has to be large enough compared to the polynomial coefficients.2074

It might seem pointless to reduce polynomial arithmetic to integer arithmetic given that2075

integers, in turn, are normally represented as values of polynomials—for example, the2076

notation “6023018029004” above refers, by definition, to the value at 10 of the polynomial2077

6y12+2y10+3y9+y7+8y6+2y4 +9y3+4. But if one is given GMP for integer arithmetic2078

then segmentation is well known to be an easy way to carry out polynomial arithmetic.2079
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B.2: tower compatibility of segmentation2080

Let n ≥ 2 be a power of 2.Writem = 2n. As usual, represent each α ∈ Z[ζm] as the unique2081

g ∈ Z[x]/(xn + 1) with g(ζm) = α. As above, represent g by its value g(ρ) ∈ Z/(ρn + 1)2082

where ρ is a power of 2. One can recover g and thus α from this value if the coefficients of2083

g are small enough compared to ρ.2084

Theproduct g(ρ)g(−ρ) nowrepresents g ·g(−x),which in turn representsdetZ[x]/(x
n+1)

Z[x]/(xn/2+1) α.2085

This product g(ρ)g(−ρ) is the same as G(ρ2) for the unique G ∈ Z[x]/(xn/2 + 1) with2086

G(x2) = g · g(−x). Now replace (g, ρ) with (G, ρ2) and repeat.2087

This is how cyclo2power works, with ρ chosen as the smallest power of 216 such2088

that the maximum absolute value of the coefficients of the input g is below ρ/2n. Each2089

coefficient of G is a sum of n products (sometimes negated) of coefficients of g , and is2090

thus below ρ2/4n in absolute value. Taking ρ/2n instead of ρ/n simplifies the negative-2091

coefficient rewriting described below, and requiring a power of 216 rather than just a2092

power of 2 simplifies the coefficient handling more broadly.2093

For example, if n = 1024 and g has small coefficients then cyclo2power chooses2094

ρ = 216, so ρn = 216384. This is several timesmore bits than necessary to represent typical2095

outputs; see Sect. 2. Presumably one could obtain some further speed by (1) allowing the2096

initial ρ to be, e.g., 24, despite the cost of handling unaligned data, and (2) reducing2097

ρ partway through the computation, despite the cost of having to switch to a different2098

representation.2099

Note that multiplying g(ρ) by g(−ρ) is multiplying in Z/(ρn + 1). Many integer-2100

multiplication methods benefit from moduli of the special form ρn + 1 (see generally2101

[16, Section 3]), gaining about a factor 2 in performance compared to multiplying the2102

same inputs in Z. However, the documented GMP interface does not provide any of these2103

special multiplication functions.2104

B.3: negative coefficients2105

Consider the polynomial f = 5x3 + 6x2 − 7x − 8. The value of f at ρ = 1000 is f (ρ) =2106

5005992992. One can recover the coefficients of f from f (ρ) by rewriting the bottom2107

992 as 1000 − 8, producing coefficient −8 and quotient 5005993; then rewriting 993 as2108

1000 − 7, producing coefficient −7 and quotient 5006; etc.2109

This rewriting is a considerable part of thecyclo2power code.One cannot reasonably2110

avoid negative coefficients in the context of this paper: this would limit the pool of inputs2111

α in the applications in Sect. 5, and would almost always prohibit converting g into g(−x).2112

This complication disappears if one instead represents integers using a balanced digit2113

set, such as the redundant digit set {−5,−4, . . . , 4, 5} in radix 10: one can then simply2114

negate each coefficient. However, GMP does not represent integers in this way.2115

B.4: speedups over NTL2116

For small n (e.g., n = 4) and small coefficients (e.g., {−1, 0, 1}), cyclo2power is about2117

twice as fast as NTL’s resultant computation applied to xn + 1. The cyclo2power2118

advantage grows rapidly as n increases. For example, for n = 1024 and coefficients2119

−1, 0, 1 with probability 1/4, 1/2, 1/4 respectively, NTL takes about 0.66 × 109 cycles2120

while cyclo2power takes about 0.0014 × 109 cycles, more than 400 times faster. The2121

cyclo2power advantage also grows somewhat as the number of bits per coefficient2122
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increases, although this is less striking than the growth with n and less relevant to the2123

applications considered in this paper.2124

There are also functions in cyclo2power for handling power-of-2 real-cyclotomic2125

fields instead of power-of-2 cyclotomic fields. This boils down to skipping a final squaring.2126

This speedup is most noticeable for small n.2127
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