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Abstract. This paper presents a fast method to compute algebraic norms
of integral elements of smooth-degree cyclotomic fields, and, more generally,
smooth-degree Galois number fields with commutative Galois groups. The
typical scenario arising in S-unit searches (for, e.g., class-group computation)
is computing a Θ(n log n)-bit norm of an element of weight n1/2+o(1) in a
degree-n field; this method then uses n(log n)3+o(1) bit operations.

An n(log n)O(1) operation count was already known in two easier special cases:
norms from power-of-2 cyclotomic fields via towers of power-of-2 cyclotomic
subfields, and norms from multiquadratic fields via towers of multiquadratic
subfields. This paper handles more general Abelian fields by identifying
tower-compatible integral bases supporting fast multiplication; in particular,
there is a synergy between tower-compatible Gauss-period integral bases and
a fast-multiplication idea from Rader.

As a baseline, this paper also analyzes various standard norm-computation
techniques that apply to arbitrary number fields, concluding that all of these
techniques use at least n2(log n)2+o(1) bit operations in the same scenario, even
with fast subroutines for continued fractions and for complex FFTs. Compared
to this baseline, algorithms dedicated to smooth-degree Abelian fields find each
norm n/(log n)1+o(1) times faster, and finish norm computations inside S-unit
searches n2/(log n)1+o(1) times faster.

1. Introduction

Consider the element α = 3+ζ271
2048 +4ζ828

2048 of the cyclotomic field K = Q(ζ2048);
here ζm, for any positive integer m, means the complex number exp(2πi/m). Write
detK

Q α for the determinant of multiplication by α as a Q-linear map from K to
K, i.e., for the algebraic norm of α from K down to Q. (See Section 1.4 regarding
notation choices.) The following Sage commands print out detK

Q α, while measuring
how long the computation takes:

K.<zeta> = CyclotomicField(2048); alpha = 3+zeta^271+4*zeta^828
%time alpha.norm()
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Sage 9.5 (the January 2022 version of Sage [83]) takes 61 milliseconds on one core
of a 3.5GHz Intel Xeon E3-1275 v3 (Haswell) CPU, around 0.21 · 109 CPU cycles.

One has detK
Q α =

∏
c∈{1,3,5,...,2047}(3+ζ271c

2048 +4ζ828c
2048). The absolute value of the

complex number 3+ζ271c
2048 +4ζ828c

2048 is below 8, and one might guess that it is typically
somewhere around 4, i.e., that detK

Q α has absolute value around 41024 = 22048. Sage
computes the exact value of detK

Q α, an integer 272 . . . 618 ≈ 0.842 · 22048.
Inside Sage, PARI [76] finds detK

Q α as the resultant of two polynomials in Z[x].
The first polynomial is the minimal polynomial of ζ2048 over Q, namely x1024 + 1.
The second polynomial is 3 + x271 + 4x828. One can skip Sage’s number-field
machinery and directly compute detK

Q α as a polynomial resultant:
ZZx.<x> = ZZ[]
Phi = x^1024+1; g = 3+x^271+4*x^828
%time Phi.resultant(g)

Sage, when asked for a resultant of two polynomials instead of a norm of a
number-field element, calls FLINT [55] instead of PARI, and now takes 1.12 · 109

cycles. The resultant subroutine has a proof=False option allowing randomized
algorithms; this option doesn’t save time. What does save time is using NTL [87]
polynomials instead of FLINT polynomials:

ZZx.<x> = PolynomialRing(ZZ,'x',implementation='NTL')
Phi = x^1024+1; g = 3+x^271+4*x^828
%time Phi.resultant(g)

This takes 0.15 · 109 cycles.
Why does it take so many cycles to compute a 2048-bit resultant of two input

polynomials that have, in dense format, a few thousand small coefficients? The
issue is not the number of cycles required per bit for basic arithmetic: for example,
Sage takes about 20000 cycles to multiply two 2048-bit integers. The issue is
that standard fast-continued-fraction techniques for computing the resultant of two
polynomials in Z[x] have cost growing as essentially the product of the number of
input bits and the number of output bits. The resultant of xn + 1 and a sparse
n-coefficient input, with n1/2+o(1) coefficients ±1, will typically have Θ(n logn) bits;
these resultant algorithms then cost n2(logn)3+o(1). For some inputs, the output is
much smaller and the algorithms are much faster, but this is not the typical case.

It is not a new observation that one can do much better by exploiting transitivity
of determinants through a tower of subfields ofK. Take F as, e.g., the field Q(ζ1024).
Then F is a subfield of K: specifically, ζ1024 = ζ2

2048, so F is the fixed field of the
unique automorphism of K that maps ζ2048 to −ζ2048. Hence

detK
F α = (3 + ζ271

2048 + 4ζ828
2048)(3 + (−ζ2048)271 + 4(−ζ2048)828)

= 9 − ζ271
1024 + 24ζ414

1024 + 16ζ828
1024 = 9 − ζ271

1024 − 16ζ316
1024 + 24ζ414

1024.

One can then compute detK
Q α as detF

Q detK
F α:

ZZx.<x> = PolynomialRing(ZZ,'x',implementation='NTL')
g = 3+x^271+4*x^828
%time g = ZZx(list(g*g(-x))[::2]) % (x^512+1)
%time (x^512+1).resultant(g)

Here g*g(-x) gives g · g(−x) = detZ[x]
Z[x2] g, a polynomial whose value at ζ2048 is

detK
F α; list(g*g(-x)) gives the list of coefficients of g·g(−x); [::2] extracts every
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second coefficient; ZZx(...) produces the corresponding polynomial, a polynomial
whose value at ζ1024 is detK

F α; and %(x^512+1) reduces modulo x512+1. This is, up
to sign, also g.adams_operator(2)%(x^512+1) since deg g > 0, but the “Adams”
naming is questionable given that this operator on polynomials was already used
(for root-finding) by Dandelin in [39, page 49] in 1826; see generally [60].

Sage reports that the evaluation of detK
F takes 0.01 · 109 cycles and that the

evaluation of detF
Q takes 0.09 · 109 cycles. One can save more time by recursively

decomposing detF
Q via transitivity, and exploiting the special form of the power-of-2

cyclotomic polynomials to convert each modular reduction into subtraction:
ZZx.<x> = PolynomialRing(ZZ,'x',implementation='NTL')
g = 3+x^271+4*x^828
%time for d in 512,256,128,64,32,16,8,4,2,1: \
  L = list(g*g(-x))[::2]; \
  g = ZZx(L[:d])-ZZx(L[d:])

This reduces the total time to just 0.011 · 109 cycles. Appendix C removes more
overhead and takes just 0.0012 · 109 cycles. The important point to keep in mind
is that the typical algorithm cost has dropped from n2+o(1) to n1+o(1).

1.1. Contributions of this paper. As a baseline, Section 3 analyzes the costs
of various standard detK

Q techniques that work for arbitrary number fields. The
special case of power-of-2 cyclotomics, as in the Q(ζ2048) example above, suffices
for seeing that these techniques are not competitive asymptotically, so Section 3
focuses on this case. The main conclusion of Section 3 is that, in the typical case
of Θ(n logn)-bit outputs for field degree n (see Section 2 for why this is typical),
all of these techniques use at least n2(logn)2+o(1) bit operations.

Section 4 explores the question of which number fields allow lower-cost evaluation
of detK

Q via transitivity, in particular reducing n2(logn)2+o(1) to n(logn)3+o(1). It is
natural to ask for the field degree to be smooth—a product of small primes—and for
the field to have a correspondingly long tower of subfields. The challenge addressed
in Section 4 is to build algorithms to multiply efficiently on tower-compatible bases
for these subfields. Note that this is easy for power-of-2 cyclotomics: standard
polynomial bases are compatible with the tower Q ⊂ Q(ζ4) ⊂ Q(ζ8) ⊂ · · · and are
well known to allow fast multiplication.

Section 5 analyzes applications to one of the standard techniques for computing
class groups, unit groups, etc. The technique is to enumerate small elements of
the ring of integers, and filter those elements to see which ones are S-units, where
S is the set of infinite places and small finite places. This filtering is typically
handled by an Eratosthenes-type sieving procedure when degrees are small and
discriminants are large, as in the number-field sieve for integer factorization; but
if degrees are relatively large, as in the cyclotomic case, then it seems best to
compute detK

Q α for each element α and then check which detK
Q α factor as desired.

The smooth-degree Abelian case uses fewer detK
Q α computations (since one can

search for S-units modulo automorphisms of the field) and speeds up each detK
Q α

computation, overall speeding up the sequence of detK
Q α computations by a factor

close to n2. The Abelian case also speeds up the factorizations.

1.2. Previous work on speedups using transitivity. The fact that transitivity
of determinants saves effort is standard textbook material. For example, a standard
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exercise starts with the degree-4 field K = Q(ζ5) and the real subfield F = R∩K =
Q(

√
5), and computes detK

Q α as detF
Q detK

F α. But such small examples give little
information regarding how much effort is saved in larger examples.

For any power-of-2 cyclotomic field K, Gentry and Halevi [51, Section 4] used
a tower of power-of-2 cyclotomic subfields to compute detK

Q α in essentially linear
time, as in the Q(ζ2048) example given above. Bauch, Bernstein, de Valence, Lange,
and van Vredendaal [9, Section 3.4], for the case of multiquadratic fields K =
Q(

√
d1,

√
d2, . . . ,

√
dt), computed detK

Q α in essentially linear time using a tower of
multiquadratic subfields.

Gentry and Halevi also computed trK
Q (1/α) for α 6= 0. One can easily obtain

the inverse-trace algorithm in [51] by applying the following simple general-purpose
conversion, an example of automatic differentiation, to the detK

Q algorithm in [51]:
for any K, take any algebraic algorithm for α 7→ detK

Q α, tensor with the jet plane
Q[ε]/ε2 over Q, and apply the resulting algorithm to α+ ε to obtain

detK[ε]/ε2

Q[ε]/ε2 (α+ ε) = (detK
Q α)(1 + ε trK

Q (1/α)).

This conversion loses a small constant factor in performance. This is not how the
inverse-trace algorithm in [51] is described, but one can, with some effort, check
that this is what the algorithm does.

1.3. Fast-multiplication subroutines. There is a huge literature on FFT-based
algorithms to multiply two elements of R[x]/ϕ, for any monic ϕ ∈ R[x] with degϕ =
n, using n(logn)1+o(1) operations on coefficients in R. See generally [16].

These algorithms are faster by a constant factor when ϕ is “FFT-friendly”. This
constant factor is not visible in the n(logn)1+o(1) asymptotics, but it becomes
visible if one applies the same idea recursively to multiply in a ring presented as
a tower such as (· · · ((R[x1]/ϕ1)[x2]/ϕ2) · · · )[xt]/ϕt. In a “multidimensional FFT”,
each ϕj is FFT-friendly (e.g., a size-n Hadamard–Walsh transform has ϕj = x2

j − 1
and n = 2t), and the cost is Θ(n logn) for n coefficients; see Section 4.12.1. For
general ϕj , a constant-factor loss c at each level of the tower turns into a loss ct for
t levels, increasing costs by a factor nΘ(1) if t ∈ Θ(logn).

As van der Hoeven and Lecerf pointed out in [59], if one modifies a tower to
force t ∈ o(logn), by replacing any constant-degree steps with superconstant-degree
steps, then the ct overhead factor mentioned above is no(1), and one obtains total
cost n1+o(1) for multiplication. There is some tension between the idea of reducing
t and the idea of exploiting towers to save time in detK

Q computation; but note
that if there are t levels, each of relative degree nO(1/t), then there are nO(1/t)

multiplications at each level, so reaching total cost n1+o(1) for detK
Q simply requires

t to be superconstant. A closer look shows that one can do better—as an analogy,
FFTs are asymptotically better than Toom’s method for univariate multiplication,
even though both take essentially linear time—but one should not think that short
towers are useless.

For multiquadratic fields Q(
√
d1,

√
d2, . . . ,

√
dt), the multiplication algorithm

in [9, Section 3.3] selects enough moduli p for which all of d1, d2, . . . , dt are squares
modulo p, and then uses Hadamard–Walsh transforms twisted by

√
d1,

√
d2, . . . ,

√
dt

modulo p.
One can, with effort, extract from a paper by Arita and Handa [6, Sections 3.3,

3.4, and 4.3] an essentially-linear-time algorithm to multiply on Gauss-period bases
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of prime-conductor Abelian fields, i.e., subfields of Q(ζp) (beyond Q) where p is
prime. This algorithm can be viewed as a simple “folding” of an FFT algorithm that
Rader introduced in [82], an algorithm having a different flavor from conventional
FFTs; see Section 4.8. Section 4.12 handles more general Abelian fields, unifying
the idea of folding with an extension of Winograd’s generalization [96] of Rader’s
idea.

1.4. Notation and terminology. Wessel [95] and independently Argand [3]
introduced a geometric description of each complex number a + bi as a line in
the plane from (0, 0) to (a, b). Wessel [95, page 469] referred to (a2 + b2)1/2 as
the length of the line (“Længde” in Danish). Argand [4, page 208] referred to
(a2 + b2)1/2 as the absolute size (“grandeur absolue” in French) and the modulus
(“module” in French) of a+bi. Gauss [49, page 103] referred to a2 +b2 as the norm
(“norma” in Latin) of a + bi for a, b ∈ Z. (One meaning of “norma” in Latin is a
carpenter’s square used to measure right angles.)

Subsequent literature reused the “norm” terminology for generalizations (1) to
algebraic norms, typically called just “norms”, but also (2) to 2-norms such as the
`2 norm and the L2 norm, and beyond that to further generalizations of the concept
of length, also typically called just “norms”. Algebraic norms and 2-norms coincide
for a+ bi, aside from quibbles about a2 + b2 vs. (a2 + b2)1/2, but differ in general.

This wouldn’t be problematic if there were a clear dividing line between papers
in number theory saying “norm” for algebraic norms and papers in analysis saying
“norm” for those other things. The reality, however, is that those other things
appear constantly in number theory (and not just in analytic number theory):
consider lattices, for example, or Weil height. Perhaps it’s time for number theorists
to consider ending the conflict: put the “norm” word down gently and back away.

What, then, should algebraic norms be called? Nobody actually says “algebraic
norms” or “field norms” except for disambiguation. Meanwhile there is a well
known, standard, unambiguous name for a more general concept: “determinant”.
We refer to the trace of multiplication by α as the trace of α; shouldn’t we also
refer to the determinant of multiplication by α as the determinant of α?

There are parameters, of course: in the case of fields, there’s an input field and
an output field, with the input field having finite degree over the output field. We
all know what the trace map is from the input field to the output field; it’s not a
big leap to talk about the determinant map from the input field to the output field.

As for notation, Dirichlet [40, page 295] wrote N(a+bi) for a2+b2; there were no
parameters in the N map. Subsequent literature sometimes uses NF for a norm to
F (as in, e.g., [58, page 204] and [57, page 125]) and sometimes uses NF for a norm
from F (as in, e.g., [30]). The extra effort of writing NL/K resolves the ambiguity
(if L and K aren’t objects with a quotient that could be reasonably plugged into
the NF notation), but anyone who has taken a course in differential geometry, the
study of superscripts and subscripts, will see that there’s a better place to put the
input field. This is not a new idea: see, e.g., [69, page 16] and [41].

As a separate matter, the short name “N” is fine for local notation (notation
where brevity is prioritized over broad readability), but it doesn’t work well as
global notation given all the other common uses of “N”. Again determinants come
to the rescue: the global notations “det” and “tr” are well established. Adding a K
subscript for K-linear maps, and an L superscript for taking inputs in L as linear
maps from L to L, gives this paper’s notation detL

K α.



6 DANIEL J. BERNSTEIN

This paper does not attempt to avoid the following common abbreviations:
“Rings” are commutative rings. If R is a ring and S is a set then RS is the ring of
S-indexed vectors with entries in R and coordinatewise operations. If R is a ring
and H is a finite commutative group then R[H] is the group ring of H over R, the
ring of H-indexed vectors with entries in R and convolution as multiplication.

If R is a ring and m is a positive integer then a primitive mth root of 1 in R
means an element ζ ∈ R such that (1) ζm = 1; (2) ζm/p − 1 is invertible in R for all
primes p dividing m; and (3) m is invertible in R (which one can deduce from the
other conditions). The notation ζm is specifically the complex number exp(2πi/m).

If B is a basis (of, e.g., a vector space) then the set of entries in B is called a
“basis set”; this is not to be confused with B itself, which is a sequence.

1.5. Acknowledgments. Thanks to Tanja Lange for her comments. Thanks to
Christine van Vredendaal for carrying out initial versions of the experiments in
Section 2.

2. Sizes

Consider all weight-w elements α = α0 + α1ζm + · · · + αn−1ζ
n−1
m of the ring of

integers R = Z[ζm] of the power-of-2 cyclotomic field K = Q(ζm). Here n = m/2,
and “weight w” means 2-norm w1/2, i.e.,

∑
j α

2
j = w. This section analyzes the

distribution of sizes of the integers |detK
Q α|.

These sizes illustrate the detK
Q α sizes of interest in Sections 3 and 4; those

sections include analyses of the performance of various detK
Q algorithms, and the

analyses depend on the number of bits in detK
Q α. The distribution considered in this

section arises naturally in the standard S-unit search in Section 5, which enumerates
small-weight elements α ∈ R and checks whether detK

Q α factors into small primes;
presumably detK

Q α is more likely to factor appropriately if it is smaller.
One can also ask about the distribution of detK

Q α for other cyclotomic fields
(and other Abelian fields), but the power-of-2 case suffices as an example of what
to expect. I haven’t found literature directly on point. There are analyses of the
distribution of detK

Q α inside the number-field sieve (see, e.g., [11, eprint version,
Section 5.1; journal version, Section 2.2]), but NFS considers fields of relatively low
degree compared to the discriminant. The analysis below is conceptually similar to
[9, Section 8.1], which heuristically analyzes the coefficients of a Dirichlet log vector
of a small element of a real multiquadratic field K on a unit basis obtained from
fundamental units of quadratic subfields; but the details here are more complex
than in [9], since the embeddings K → C here are not embeddings K → R.

2.1. Notation. Throughout this section, n ∈ {2, 4, 8, 16, . . .}; m = 2n; w is a
positive integer; K = Q(ζm); and R = Z[ζm]. For each odd integer c, the function
σc : K → C is the unique ring morphism taking ζm to ζc

m.

2.2. Upper bounds. One has |ζm| = 1, so |α| ≤
∑

j |αj | ≤
∑

j α
2
j = w. (For

w > n, one can do better by replacing the inequality
∑

j |αj | ≤ w with Cauchy’s
inequality

∑
j |αj | ≤ n1/2w1/2; but the case of interest in Section 5 is that w is

asymptotically bounded by n1/2+o(1).) More generally, |ζc
m| = 1, so |σc(α)| ≤ w.

Hence |detK
Q α| =

∏
c∈{1,3,5,...,m−1} |σc(α)| ≤ wn.
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2.3. The circular approximation to the distribution. If w = 1 then the
above upper bound is achieved, but for larger w one expects σc(α) =

∑
j αjζ

cj
m

to have summands αjζ
cj
m pointing in different directions in C, usually with sum

considerably smaller than the upper bound.
Define the circular approximation to the distribution of log |detK

Q α| as a
normal distribution with mean n(logw − γ)/2 ≈ n(logw)/2 − 0.28860783245n,
where γ is Euler’s constant, and variance nπ2/24 ≈ 0.411233516712n. Notice that
this mean is under half of the upper bound n logw from Section 2.2, although the
ratio converges up to 1/2 as w → ∞. The following paragraphs explain how the
circular approximation arises from a heuristic analysis of the size of log |detK

Q α|.
The first step is to model each σc(α) as

∑
j αj exp 2πiρc,j where each ρc,j is an

independent uniform random element of R/Z. The distribution of
∑

j αj exp 2πiρc,j

is invariant under rotation; the basic strategy here is to recover this distribution
from its real part.

To analyze the real part of
∑

j αj exp 2πiρc,j , note that the variance of cos 2πρ for
uniform random ρ ∈ R/Z is

∫ 1
0 (cos 2πρ)2 dρ = 1/2. The variance of

∑
j αj cos 2πρc,j

is
∑

j α
2
j/2 = w/2 since, by independence, the summands are uncorrelated.

Now apply the heuristic that sums are normally distributed to conclude that∑
j αj exp 2πiρc,j has a complex normal distribution with mean 0 and variance v

for some v. By definition of the complex normal distribution, the real and imaginary
parts are independent normal random variables with variance v/2, so v = w.

If N is a complex normal random variable with mean 0 and variance 1 then
log |N | has mean −γ/2 ≈ −0.28860783245 and variance π2/24 ≈ 0.411233516712. If
N is a complex normal random variable with mean 0 and variance w then log |N | has
mean (logw − γ)/2 and variance π2/24. If N1, . . . , Nn are n uncorrelated complex
normal random variables with mean 0 and variance w then log |N1 · · ·Nn| has mean
n(logw − γ)/2 and variance nπ2/24. Finally, the sums-are-normally-distributed
heuristic says that log |N1 · · ·Nn| is normally distributed.

2.4. Objections to the heuristics. As m increases, the powers ζc
m for uniform

random c ∈ {1, 3, . . . ,m− 1} approach a uniform distribution on the unit circle in
the following sense: for each arc A of the circle, limm→∞ Pr[ζc

m ∈ A] is the fraction
of the circle contained in A. The same argument applies to ζcj

m for any odd j. One
can object, however, that this argument breaks down as more and more powers
of 2 appear in j: as an extreme case, ζcj

m is always 1 for j = 0. If w is small
then there is a noticeable chance that α ∈ F for a proper subfield F ⊂ K, and
then detK

Q α = (detF
Q α)degF K , with distribution determined by the distribution of

detF
Q α. (For the application to recognizing S-units, one can save time in these cases

by simply computing detF
Q α and checking its factorization.)

Even for odd j, one can object to modeling ζcj
m as pointing in independent

directions as the pair (c, j) varies. For example, if j′ = j + m/4, then the ratio
ζcj′

m /ζcj
m = ζ

c(j′−j)
m = ic is limited to the set {i,−i}. If α ∈ ζmF for a proper subfield

F ⊂ K then detK
Q α = (detF

Q (α/ζm))degF K , again with distribution determined by
the detF

Q output distribution.
Furthermore, even with the uniform random directions in

∑
j αj exp 2πiρc,j ,

one can object to the heuristic of treating this sum as having a normal
distribution—especially when w is small, since there are at most w nonzero
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summands. One can similarly object to treating log |N1 · · ·Nn| as having a
normal distribution. The sums-are-normally-distributed heuristic is only a crude
approximation to the central-limit theorem.

One could, with more work, remove the sums-are-normally-distributed heuristic
in favor of the following computations:

• Compute the distribution of
∑

j αj cos 2πρc,j by convolving scaled cosine
distributions. A complication here is that one needs to combinatorially
enumerate possibilities for #{j : |αj | = 1}, #{j : |αj | = 2}, etc.; but, for
large n and relatively small w, the probabilities are dominated by the first
few possibilities, those where |αj | is rarely above 1.

• Recover the rotationally invariant distribution of
∑

j αj exp 2πiρc,j from the
distribution of

∑
j αj cos 2πρc,j . The point is that any rotationally invariant

random variable can be written in polar coordinates as r exp 2πiτ where τ is
a uniform random element of R/Z independent of r; so take the distribution
of the real part r cos 2πτ , compute the Mellin transform of the density
function, divide by the Mellin transform of the density function of cos 2πτ ,
and compute an inverse Mellin transform to obtain the density function of
r. (As noted by Epstein [43], multiplying independent random variables
corresponds to multiplying Mellin transforms of density functions.)

• Compute the distribution of log |N1 · · ·Nn| as a convolution of n copies of
the r distribution.

But this still would not handle the actual directions of ζcj
m .

One can also object that the circular approximation to log |detK
Q α| cannot be

exactly correct: for each (n,w), the distribution of log |detK
Q α| is discrete, while

a normal distribution is continuous; also, log |detK
Q α| is bounded between 0 and

n logw, whereas a normal distribution is unbounded.

2.5. Numerical evidence. Table 2.5.1 presents, for various choices of (m,w), the
mean and variance of log |detK

Q α| across two sets of 65536 experiments. The set
where “double” is “yes” chooses α uniformly at random from weight-w elements
where |α0| = 2 and |αj | ∈ {−1, 0, 1} for all other j. The set where “double” is “no”
instead takes weight-w elements where |αj | ∈ {−1, 0, 1} for all j.

These experiments were carried out with the Sage script shown in Figure 2.5.2.
The script uses deterministic seeds for reproducibility. The multicore.py used
in the script is from [1]. The script also checks the integrals that account for the
appearance of γ/2 and π2/24 in this section.

Table 2.5.1 suggests that the actual mean divided by n is always larger than the
circular approximation (logw − γ)/2, with a gap of roughly 1/4m + 1/8w for the
non-double cases, converging down to 0 as m and w jointly increase. The variance
divided by n is consistently below the circular approximation π2/24, indicating an
anti-correlation not captured by the approximation.

Figure 2.5.3 plots the distribution (as a transposed cdf) of log |detK
Q α| observed

in the same non-double experiments (blue curve), and, for comparison, plots the
circular approximation (black curve). Both curves are on a vertical scale chosen so
that the circular approximation runs from 4 standard deviations below the mean to
4 standard deviations above the mean, so the circular approximation always has the
same visual shape; note that this scale covers an interval of length only 8

√
nπ2/24

within the interval [0, n logw].
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m w double mean/n circular variance/n circular
16 8 no 0.784449649 0.751112938 0.250840752 0.411233517
32 8 no 0.775048231 0.751112938 0.297784952 0.411233517
64 8 no 0.771626119 0.751112938 0.300073045 0.411233517

128 8 no 0.769201091 0.751112938 0.297076268 0.411233517
256 8 no 0.767971656 0.751112938 0.302569974 0.411233517
512 8 no 0.767479526 0.751112938 0.304084689 0.411233517

1024 8 no 0.767090049 0.751112938 0.303938674 0.411233517
16 8 yes 0.818907856 0.751112938 0.225903248 0.411233517
32 8 yes 0.812924644 0.751112938 0.230691245 0.411233517
64 8 yes 0.806721757 0.751112938 0.237712502 0.411233517

128 8 yes 0.804556061 0.751112938 0.248258970 0.411233517
256 8 yes 0.803026844 0.751112938 0.253884971 0.411233517
512 8 yes 0.802299755 0.751112938 0.254374189 0.411233517

1024 8 yes 0.801913665 0.751112938 0.255755664 0.411233517
32 16 no 1.114195770 1.097686529 0.334337997 0.411233517
64 16 no 1.109688552 1.097686529 0.311985149 0.411233517

128 16 no 1.107739880 1.097686529 0.311517559 0.411233517
256 16 no 1.106948700 1.097686529 0.306271284 0.411233517
512 16 no 1.105902631 1.097686529 0.307222592 0.411233517

1024 16 no 1.105780026 1.097686529 0.309983682 0.411233517
32 16 yes 1.120215430 1.097686529 0.311499371 0.411233517
64 16 yes 1.116518517 1.097686529 0.301666920 0.411233517

128 16 yes 1.114480430 1.097686529 0.296678360 0.411233517
256 16 yes 1.113406893 1.097686529 0.295366668 0.411233517
512 16 yes 1.113021383 1.097686529 0.295927515 0.411233517

1024 16 yes 1.112847196 1.097686529 0.293394668 0.411233517
64 32 no 1.452868312 1.444260119 0.321582083 0.411233517

128 32 no 1.450717062 1.444260119 0.317665867 0.411233517
256 32 no 1.449325700 1.444260119 0.313848217 0.411233517
512 32 no 1.448456593 1.444260119 0.316434954 0.411233517

1024 32 no 1.448386058 1.444260119 0.317395974 0.411233517
64 32 yes 1.453645761 1.444260119 0.318097521 0.411233517

128 32 yes 1.451760998 1.444260119 0.314215624 0.411233517
256 32 yes 1.450895244 1.444260119 0.311772454 0.411233517
512 32 yes 1.450557535 1.444260119 0.310832695 0.411233517

1024 32 yes 1.450065121 1.444260119 0.311119663 0.411233517
128 64 no 1.794740422 1.790833709 0.319886453 0.411233517
256 64 no 1.794126237 1.790833709 0.321972595 0.411233517
512 64 no 1.793239181 1.790833709 0.319304636 0.411233517

1024 64 no 1.792934800 1.790833709 0.319631699 0.411233517
128 64 yes 1.794696805 1.790833709 0.320421343 0.411233517
256 64 yes 1.794007734 1.790833709 0.318422104 0.411233517
512 64 yes 1.793524077 1.790833709 0.317942481 0.411233517

1024 64 yes 1.793224334 1.790833709 0.318389943 0.411233517
Table 2.5.1. Mean and variance of log |detK

Q α| for 65536 random
choices of α in each line. See text for details.
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experiments = 65536
mlist = 16,32,64,128,256,512,1024
wlist = 8,16,32,64

import multicore

assert (1/exp(x)).integral(x,0,oo) == 1
assert (log(x)/exp(x)).integral(x,0,oo) == -euler_gamma
assert (log(x)^2/exp(x)).integral(x,0,oo) == euler_gamma^2 + pi^2/6
gamma = euler_gamma.n()
pi224 = (pi^2/24).n()

ZZx.<x> = PolynomialRing(ZZ,'x',implementation='NTL')
Phi = {m:ZZx(cyclotomic_polynomial(m)) for m in mlist}

def doit(experiment):
  results = []
  with seed(experiment):
    for m in mlist:
      n = Phi[m].degree()
      for w in wlist:
        for double in 'no','yes':
          if double == 'yes':
            if w-3 > n: continue
            alpha = [2]+[1]*(w-4)+[0]*(n-w+3)
          else:
            if w > n: continue
            alpha = [1]*w+[0]*(n-w)
          shuffle(alpha)
          for j in range(n):
            if randrange(2):
              alpha[j] *= -1
          assert len(alpha) == n
          assert sum(alphaj^2 for alphaj in alpha) == w
          N = abs(Phi[m].resultant(ZZx(alpha)))
          results += [(m,n,double,w,experiment,log(RR(N)))]
  return results

data = {}
for results in multicore.map(doit,range(experiments)):
  for m,n,double,w,experiment,logN in results:
    print('m',m,'w',w,'double',double,'experiment',experiment,logN)
    key = w,double,m,n
    if key not in data: data[key] = []
    data[key] += [logN]

for key in sorted(data):
  w,double,m,n = key
  print('m',m,'w',w,'double',double,
    'mean/n',mean(data[key])/n,'meanheuristic/n',log(RR(w))/2-gamma/2,
    'variance/n',variance(data[key],bias=True)/n,'varianceheuristic/n',pi224)

Figure 2.5.2. Sage script for experiments used in Table 2.5.1.
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Figure 2.5.3. Rows, top to bottom: m is 64, 128, 256, 512, 1024.
Columns, left to right: w is 8, 16, 32, 64. Blue curve in each graph:
sorted values of log |detK

Q α| for 65536 random choices of α. Black
curve: circular approximation. Vertical scale: circular ±4σ.
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3. Quadratic techniques

This section reviews various standard algorithms that, for arbitrary number fields
K, evaluate α 7→ detK

Q α. This section analyzes the cost of these algorithms applied
to power-of-2 cyclotomics K = Q(ζm), specifically for the scenario motivated in
Section 2: namely, α is a nonzero element of Z[ζm] of weight n1/2+o(1) where n =
m/2, and detK

Q α has Θ(n logn) bits.
In short, the modular continued-fraction approach costs n2(logn)3+o(1) bit

operations, although there are occasional inputs α where a factor logn disappears
because of a short remainder sequence. The complex-embeddings approach costs
n2(logn)2+o(1) bit operations.

3.1. Why resultant computation is so slow, part 1: big integers. Recall
that the Euclid–Stevin algorithm to compute polynomial gcd repeatedly replaces
(f, g) with (g, f mod g) as long as g 6= 0. Tracking degrees and leading coefficients
of the remainders f, g, f mod g, . . . reveals the resultant. The point here is that

resultant(f, g) = (−1)(deg f) deg g(leadcoeff g)deg f−deg(f mod g) resultant(g, f mod g)

if g 6= 0 and f mod g 6= 0. There are two base cases: one has resultant(f, g) = gdeg f

if deg g = 0, and one has resultant(f, g) = 0 if deg g > 0 and f mod g = 0.
If deg f = n > deg g then the remainder sequence f, g, f mod g, . . . inside the

Euclid–Stevin algorithm has O(n2) coefficients and the quotient sequence bf/gc, . . .
has O(n) coefficients. One can compute the quotient sequence in time at most
n(logn)2+o(1); see, e.g., [16, Sections 21–22]. Given n and the quotient sequence,
one can compute the sequence of remainder degrees, the sequence of remainder
leading coefficients, and the resultant. The total time is at most n(logn)2+o(1).

However, one must be careful with the concept of “time” used in the previous
paragraph. This is actually a count of operations in the base field: operations in Q,
if the goal is to compute a resultant of polynomials with coefficients in Q.

If one takes f = x1024+1 and g = 4x828+x271+3 then there are 211 Euclid–Stevin
quotients. The 100th quotient is a polynomial whose coefficients have more than
100000 bits in each numerator and denominator. The final quotient is a linear
polynomial whose coefficients have more than 400000 bits in each numerator and
denominator. The cost of computing these quotients is driven much more by the
number of bits than by the number of coefficients.

Collins [36] showed that simply rescaling the Euclid–Stevin remainders produces
polynomials with much smaller coefficient bounds. These polynomials are called
“subresultants”: their coefficients are determinants of various portions of Sylvester’s
resultant matrix. The determinant description shows that the subresultants are in
Z[x] when f, g ∈ Z[x]. The bounds in [36] on the coefficients of subresultants come
from applying Hadamard’s determinant inequality to bounds on the coefficients of
f and g.

One still cannot escape some growth of coefficients. For example, recall that the
resultant of f = x1024 +1 and g = 4x828 +x271 +3 has 2048 bits. This growth is not
something that suddenly appears at the last moment in the subresultant algorithm:
most algorithm steps are, for almost all inputs, working with large integers.

A subsequent paper by Collins [37] suggested a modular approach to computing
resultant(f, g) given f, g ∈ Z[x]. If one assumes schoolbook arithmetic then the
modular approach gives better cost bounds than the subresultant approach; this
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comparison appears in, e.g., [86, page 449, top paragraph]. Perhaps fast arithmetic
would narrow the gap, but evaluating this would require developing a variant of
fast-continued-fraction algorithms that controls coefficient sizes, and the literature
does not give any reason to think that this effort would end up with a faster
algorithm than the modular approach. So let’s look at the performance of the
modular approach.

3.2. Why resultant computation is so slow, part 2: many moduli. The
modular approach reconstructs resultant(f, g) from the image of resultant(f, g) in
Fp for enough primes p. This image is the same as the resultant of the images of
f, g in Fp[x], as long as one avoids “bad” primes p, meaning primes that divide the
leading coefficients of f and g.

How does one figure out how many primes are enough? One answer is to use
Hadamard’s inequality to quickly bound the resultant. Another answer, suggested
by Monagan [71], is to guess that a few primes suffice, then more primes, and so on,
stopping when the output is sufficiently stable; this fails with negligible probability
if there is enough randomness in the primes. The Sage resultant documentation
says that proof=False “may use a randomized strategy that errors with probability
no more than 2−80”.

In the scenario studied in this section, resultant(f, g) has Θ(n logn) bits. One
can simply choose primes having enough bits for the explicit upper bounds from
Section 2.2, although the analysis of Section 2 suggests that one can usually save a
factor above 2 by tuning the number of primes appropriately. Either way,

∏
p p has

Θ(n logn) bits. The following analysis concludes that the modular approach then
costs n2(logn)3+o(1), provided that one takes each log log p in (logn)o(1).

Note first that one can take each log log p in (logn)o(1). For example, choose a
parameter y, and take all odd primes p ≤ y. By the prime-number theorem,

∏
p≤y p

reaches the desired Θ(n logn) bits for a suitable choice of y ∈ Θ(n logn). One has
to skip bad primes, but one can compensate by multiplying 1 + |leadcoeff fg| into
the target for

∏
p≤y p; the limited coefficient size for f and g implies that the target

still has Θ(n logn) bits. Now each p ∈ O(n logn), implying log log p ∈ (logn)o(1).
There is considerable slack in this argument: one can take much larger p and still
have log log p ∈ (logn)o(1).

Each continued-fraction computation in Fp[x] involves at most n(logn)2+o(1)

operations in Fp (including initial reduction of f and g modulo p; f and g have
small coefficients, so one does not need to batch this reduction across p). The cost
of each operation in Fp is at most (log p)(log log p)1+o(1), i.e., (log p)(logn)o(1), and
summing across all p gives n(logn)1+o(1) since

∑
p log p ∈ Θ(n logn). The total

cost is thus at most n2(logn)3+o(1).
Could the cost actually be lower than this? Strassen [92] pointed out that one

logn factor in the cost of continued-fraction computation actually arises as the
entropy of the list of quotient degrees in the Euclid–Stevin algorithm. The case of
sparse f and sparse g should not be confused with the “normal” case of all quotient
degrees 1 (for example, if f = x1024 + 1 and g = x999 + x+ 1 then there are just 28
divisions), but experiments suggest that the entropy is usually Θ(logn) once g has
at least 3 terms.

3.3. Complex embeddings. Another way to compute detK
Q α for any degree-n

number field K and any α ∈ K is as
∏

σ σ(α), where σ runs through all ring
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morphisms K → C. If each complex number σ(α) is represented as a floating-point
number with Θ(n logn) bits of precision then the product

∏
σ σ(α) also has

Θ(n logn) bits of precision—the n − 1 multiplications lose, in total, just Θ(logn)
bits of precision—and if the Θ constant is adjusted appropriately then this is enough
precision to recover the integer detK

Q α.
Belabas [10, Section 5.2] recommended using complex embeddings to compute

detK
Q α whenever detK

Q α is “relatively small”. The following paragraphs quantify
the cost of this approach, including the quantification from [10] but also including
speedups beyond [10].

The input α ∈ K is given in what Cohen [34, Section 4.2] calls the “standard
representation” of K: α is represented as a polynomial g ∈ Z[x] with g(θ) = α and
deg g < degK. Here θ is a fixed integral primitive element of K, a root of a monic
irreducible polynomial f ∈ Z[x]; one can think of the complex-embedding approach
as another way of computing resultant(f, g). For the power-of-2-cyclotomic case
K = Q(ζm), one takes θ = ζm and f = xn + 1.

The first step is to compute σ(α) = g(σ(θ)) for each embedding σ. Belabas
views this as multiplying the vector of coefficients of g by a precomputed matrix
with complex entries σ(1), σ(θ), σ(θ2), . . . ; this is, e.g., the matrix of powers ζcj

m in
the case of power-of-2 cyclotomics, where c runs through {1, 3, . . . ,m− 1}. Belabas
says that this multiplication costs O(n2M(B)) where n is the field degree, B is the
number of bits of precision required, and M(B) is the cost of B-bit multiplication.

Three speedups noted in [10] are as follows. First, often one already knows a
divisor of detK

Q α, so one can reduce the required precision accordingly. Second, in
multiplying complex numbers to obtain detK

Q α, one should begin by multiplying the
numbers for complex-conjugate σ, so that subsequent multiplications are in R; see
Section 3.4 below. Third, low-precision complex computations suffice to determine
the approximate value of detK

Q α, pinpointing how much precision is required for
an exact computation—in particular, recognizing cases where detK

Q α is unusually
small. (One can also use this to avoid the guesswork described above regarding
how many primes are required for a modular computation of a resultant.)

Beware that small detK
Q α does not immediately imply that small B suffices:

if any particular σ(α) is close to 0 then the precision obtained for σ(α) is lower
than the initial precision of σ(1), σ(θ), σ(θ2), . . . , so one needs to recompute σ(α)
in higher precision. The main case of interest in this section is that detK

Q α has
Θ(n logn) bits, and then one can see that B ∈ Θ(n logn) suffices as follows: each
|σ(α)| is nO(1) as in Section 2.2, but |detK

Q α| is at least 1 (since α 6= 0), so each
|σ(α)| is at least 1/nO(n). So assume B ∈ Θ(n logn); the n2M(B) from [10] is then
n3(logn)2+o(1).

An asymptotically better way to compute g(σ(θ)) for all σ, not noted in [10], is
by multipoint evaluation, precomputing a tree of products of x − σ(θ) and then
computing a tree of remainders of g modulo those products. Schönhage [84,
Section 2] used segmentation to reduce multiplication in C[x] to multiplication
in Z, obtaining a cost bound nB(lognB)1+o(1) for n-coefficient polynomials with
B bits in each coefficient and all coefficients on the same scale; this cost bound is
n2(logn)2+o(1) for B ∈ Θ(n logn). Schönhage [84, Section 4] obtained the same
cost bound for division in C[x], assuming that one is dividing by polynomials whose
roots in C are O(1). A multipoint-evaluation tree has Θ(logn) layers, for total cost
n2(logn)3+o(1).
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A particularly efficient form of remainder tree is an FFT tree—exactly what
is needed here, since K is assumed to be a power-of-2 cyclotomic. Even simpler
than building a tree is using Bluestein’s trick from [24] and [25] to reduce DFT to
convolution. Schönhage [84, Section 3] used Bluestein’s trick to obtain a cost bound
nB(lognB)1+o(1) for a size-n DFT with B bits of precision; i.e., cost n2(logn)2+o(1)

for B ∈ Θ(n logn).
The subsequent n− 1 multiplications of σ(α) values, each to B bits of precision,

cost nB(logB)1+o(1). If B ∈ Θ(n logn) then the overall cost is n2(logn)2+o(1). This
is, for most inputs, asymptotically better than the continued-fraction approach: it
avoids an extra (logn)1+o(1) factor.

3.4. Complex conjugation on complex embeddings. As noted above,
inside the complex-embeddings approach, Belabas suggested first multiplying
complex-conjugate pairs of complex numbers. In the 3+ζ271

2048 +4ζ828
2048 example, this

means computing the real number (3+ζ271c
2048 +4ζ828c

2048)(3+ζ−271c
2048 +4ζ−828c

2048 ) for each
pair {c,−c}. Then the subsequent multiplications are multiplications in R, which,
for any given precision, one expects to be at least twice as fast as multiplications
in C.

A 2× speedup is not visible at the level of detail of the analyses in this section.
However, it is useful to consider what this speedup is accomplishing algebraically,
for comparison to the transitivity of determinants exploited in Section 4.

The original problem is to evaluate detQ[x]/f
Q . Complex embeddings tensor with

C over Q, reducing the original problem to the problem of evaluating detC[x]/f
C .

The ring C[x]/f factors as
∏

c C[x]/(x− ζc
m), and detC[x]/f

C factors correspondingly
as

∏
c detC[x]/(x−ζc

m)
C . The image in C[x]/(x − ζc

m) of g ∈ C[x]/f is simply g(ζc
m),

with determinant g(ζc
m). Multiplying these n complex numbers g(ζc

m) produces the
desired detC[x]/f

C g = detQ[x]/f
Q g.

The complex-conjugation speedup instead tensors with R over Q. The ring
R[x]/f factors as a product of rings R[x]/((x−ζc

m)(x−ζ−c
m )), and detR[x]/f

R g factors
correspondingly as a product of detR[x]/((x−ζc

m)(x−ζ−c
m ))

R g, exactly the real numbers
multiplied above.

These real numbers, in turn, are computed as follows: tensor with C over R, and
then compute the desired detC[x]/((x−ζc

m)(x−ζ−c
m ))

C g as the product of detC[x]/(x−ζc
m)

C g

and detC[x]/(x−ζ−c
m )

C g, i.e., the product of g(ζc
m) and g(ζ−c

m ). One can, alternatively,
suppress the role of C here: reduce g modulo (x− ζc

m)(x− ζ−c
m ) ∈ R[x] and directly

compute a determinant down to R.

3.5. Complex conjugation on the original field. Complex conjugation was
used above as an automorphism of C with fixed field R. A different way
to use complex conjugation is to restrict it to the field K = Q(ζm). This
restriction is an easy-to-compute automorphism of K, namely the ring morphism
that maps ζm to ζ−1

m . The corresponding automorphism x 7→ x−1 of Q[x]/f
maps 1, x, x2, x3, . . . , xn−1, the usual basis for Q[x]/f as a Q-vector space, to
1,−xn−1,−xn−2,−xn−3, . . . ,−x respectively. This automorphism is an easy linear
map to apply.

The field R ∩ K is the fixed field of complex conjugation on K, since R is the
fixed field of complex conjugation on C. This field R ∩K has degree n/2 if m ≥ 4,
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with Q-basis 1, ζm + ζ−1
m , ζ2

m + ζ−2
m , . . . , ζ

n/2−1
m + ζ

−(n/2−1)
m . The corresponding

subfield F of Q[x]/f has Q-basis 1, x− xn−1, x2 − xn−2, . . . , xn/2−1 − xn/2+1. This
is the subfield of Q[x]/f fixed by the automorphism x 7→ x−1 of Q[x]/f ; the latter
automorphism is also called complex conjugation.

Given g ∈ Q[x]/f , write h for the product of g and its complex conjugate
g(x−1). Then h = detQ[x]/f

F g ∈ F . One can use transitivity of determinants
to compute detQ[x]/f

Q g as detF
Q h, which in turn is a product of various values

h(ζc
m) = g(ζc

m)g(ζ−c
m ).

This is the same as the product of g(ζc
m)g(ζ−c

m ) values in Section 3.4. The
difference is in how the values g(ζc

m)g(ζ−c
m ) are computed: as detCR g(ζc

m), or as a
real embedding h(ζc

m) of h = detQ[x]/f
F g.

Beware that subfields of general number fields do not capture the full power
of multiplying complex conjugates. For example, the field Q( 3

√
2) is isomorphic

to Q[x]/(x3 − 2) and has no subfields other than Q and itself; but tensoring with
C produces C[x]/(x3 − 2), which has two complex-conjugate factors. Conversely,
multiplying complex conjugates does not capture the full power of subfields; see
Section 4.

3.6. More morphisms. A common theme in computational number theory is
avoiding the hassle of Archimedean precision tracking by switching to the p-adics
for a suitable prime p, or a product of p-adics.

Let p be a prime number that is totally split in K, i.e., a prime number for which
f has n distinct roots in Fp. One can rapidly recognize this case by seeing that
xp−x modulo f is 0. Standard root-finding algorithms—or multipoint evaluation of
f on Fp if p is small—then find the roots. One can do even better for special types
of f : in particular, for K = Q(ζm), one can take any prime number p ∈ 1 + mZ,
and there are very fast algorithms to find all primitive mth roots of 1 in Fp.

The set of ring morphisms x 7→ ρ from Z[x]/f to Fp, as ρ runs through roots of f
in Fp, is analogous to the set of complex embeddings σ used above. Evaluating all
these ring morphisms on a given input g ∈ Z[x]/f is a simple matter of multipoint
evaluation, assuming the roots have been precomputed; the vector of outputs can
be viewed as a limited-precision representation of the input. The product of outputs
is the image in Fp of detZ[x]/f

Z g = detK
Q g(θ), where as before θ is a root of f in

K. Repeating for enough primes p (or one large enough p or any intermediate
possibility) then determines detK

Q g(θ).
Overall this approach has similar asymptotics to the continued-fraction

approach. Montgomery noted in [72, Section 4.2] that remainder trees seem to
be a constant factor more efficient than continued-fraction computations for most
inputs.

More generally, to compute resultant(f, g) where f has a known factorization,
one can use a remainder tree to reduce g modulo each factor, and then compute
resultant(f, g) as a corresponding product. Whether one should take the time to
search for factors of f (or for primes p where f factors better) is a different question:
this depends on the distribution of f and on how often f will be reused for resultants.
In the applications motivating this paper (see Section 5), detK

Q is evaluated on many
inputs in K, so many K-dependent precomputations are worthwhile.
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3.7. The Galois case: exploiting automorphisms. Another convenient field
where f splits completely is K itself—assuming that K is Galois.

Say f = (x− ρ1) · · · (x− ρn) in K[x]. One can evaluate g(ρ1), . . . , g(ρn) with a
remainder tree, and then use a product tree to compute the product g(ρ1) · · · g(ρn),
which is exactly detK

Q g(θ).
In the case of a power-of-2 cyclotomic K = Q(ζm), one has {ρ1, . . . , ρn} ={
ζm, ζ

3
m, . . . , ζ

m−1
m

}
with n = m/2, since xn + 1 = (x− ζm)(x− ζ3

m) · · · (x− ζm−1
m ).

Computing g(ζc
m) is simply rearranging and negating coefficients. There are still n

choices of c, with n coefficients to handle for each c, and then more work is required
for a product.

Consider a 4-factor product g(ρ1)g(ρ2)g(ρ3)g(ρ4). By assumption g has weight
n1/2+o(1), so one expects the maximum coefficient of this product to have Θ(logn)
bits, so computing this product costs n(logn)2+o(1). There are Θ(n) such products,
together costing n2(logn)2+o(1). There are then Θ(logn) layers in the product tree,
but one can achieve total cost n2(logn)2+o(1) by arranging the tree to have inputs
in Q(ζ4) for the final multiplication, Q(ζ8) for the multiplications on the previous
layer, etc.

This approach is using some of the structure that will be exploited in Section 4,
but still costs n2+o(1) because of the computations—and then multiplications—of
n different conjugates of the input.

4. Linear techniques

The fast detK
Q α computation in Section 1 started with an element α of a

power-of-2 cyclotomic field K = Q(ζm) with m/2 small coefficients, computed
a product β = ασ(α) in Q(ζm/2) with m/4 double-size coefficients, computed a
product βτ(β) in Q(ζm/4) with m/8 quadruple-size coefficients, etc. The amount
of data at each layer is essentially linear—unlike the techniques in Section 3, which
expand each of the m/2 input coefficients to a volume of data comparable to the
number of output bits. This section explores the question of how general this
speedup is.

4.1. Towers. Consider any tower Q = K0 ⊆ K1 ⊆ · · · ⊆ Kt of number fields,
with absolute degrees n0, n1, . . . , nt and relative degrees d1, . . . , dt. Then n0 = 1,
n1 = d1, n2 = d1d2, and so on through nt = d1d2 · · · dt. For simplicity assume
dj ≥ 2 for all j, eliminating trivial steps in the tower.

Consider an algorithm that, given α ∈ Kt, computes successively

αt = detKt

Kt
α as α,

αt−1 = detKt

Kt−1
α as detKt

Kt−1
αt,

αt−2 = detKt

Kt−2
α as detKt−1

Kt−2
αt−1,

...

α1 = detKt

K1
α as detK2

K1
α2,

α0 = detKt

K0
α = detKt

Q α as detK1
K0
α1.

I’ll assume from now on that the desired input field K is exactly Kt, so the output
α0 is detK

Q α. Also write n = nt.
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(One could, more generally, take K to be any subfield of Kt. If α ∈ K then
one can compute ±detK

Q α as α1/e
0 where e = (degKt)/degK. The sign of detK

Q α
is clear if e is odd; one can use low-precision complex embeddings to recover the
sign in the general case, if the sign matters for the application. However, so far I
haven’t found any cases where allowing e > 1 saves time compared to reducing to
the case e = 1, i.e., replacing each Kj with Kj ∩K, obtaining a tower for K.)

To analyze how costs scale, let’s postulate the following scenario: each αj has
O(n logn) bits across its nj coefficients, with O((n/nj) log n) bits in each coefficient;
αj has Θ(n logn) bits whenever nj < n/2; α0 has Θ(n logn) bits. The idea that
this is a typical scenario is an extrapolation from Section 2.

One might now hypothesize, extrapolating from Section 3, that computing αj−1
from αj has cost growing as d2

j times the number of bits in αj−1 times (logn)e+o(1),
where e = 1 for “FFT-friendly” choices of K and e = 2 for other choices of K. The
total cost in the above scenario is then at most (d2

1 + · · · + d2
t )n(logn)e+1+o(1).

(The only reason for saying “at most” under these hypotheses is that not all αj

are assumed to have Θ(n logn) bits; in particular, αt is merely assumed to have
O(n logn) bits.)

The sum d2
1 + · · · + d2

t is at least tn2/t. It is exactly tn2/t if d1 = · · · = dt. For
example, it is 4 log2 n if d1 = · · · = dt = 2; 8 log2 n if d1 = · · · = dt = 4; and
64 log2 n if d1 = · · · = dt = 16. On the other hand, it is 4(t − 1) + n2/4t−1 if
d1 = d2 = · · · = dt−1 = 2 and dt = n/2t−1.

Define a smooth tower as one where dj ∈ (logn)o(1) for each j. This does not
require t to grow as Θ(logn): for example, one could have dj ∈ (logn)Θ(1/log log log n)

for each j, and t ∈ Θ((logn)(log log log n)/log logn). For a smooth tower, the total
cost above—assuming the scenario described above, and assuming the hypothesized
cost of each step of the computation—is n(logn)e+2+o(1).

4.2. Why multiplication is perceived to be fast. Let’s see whether it’s
possible to justify the above hypothesis regarding the cost of computing αj−1 from
αj . Note that, for a smooth tower, d2

j is a minor cost factor, and larger powers of
dj in the cost would contribute at most (logn)o(1). The main cost factors to worry
about are the nj−1 coefficients in αj−1 and the number of bits per coefficient,
typically giving Θ(n logn) bits overall.

Consider the case that Kj has the form Kj−1(
√
δ), with dj = 2, where δ is a

non-square in Kj−1. Write σ for the unique automorphism of Kj fixing Kj−1 and
mapping

√
δ to −

√
δ. Then Kj−1 is the fixed field of σ, and one can compute αj−1

as αjσ(αj), as in the power-of-2-cyclotomic example in Section 1. How quickly can
one multiply two elements of Kj , namely αj and σ(αj)?

As in Section 3.3, let’s use the “standard representation” of a number field as
Q[x]/ϕ for some monic irreducible polynomial ϕ ∈ Z[x], with elements of Q[x]/ϕ
in turn expressed as elements of Q[x] of degree below degϕ. One of the reasons for
the popularity of this representation is that it reduces number-field computations
to polynomial computations, which in turn are well known to have fast algorithms.

In particular, multiplying two elements of Z[x]/ϕ—let’s not get distracted
here by the possibility of integral elements having denominators in this
representation—means multiplying two integer polynomials and then reducing the
product modulo ϕ. There are well-known fast algorithms for each step, and it is
easy to prove bounds on the output coefficients.
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Specifically, let n and H be positive integers. The product of two n-coefficient
polynomials g, h ∈ Z[x], with each coefficient of g, h in the interval [−H,H], is a
(2n − 1)-coefficient polynomial with each coefficient in [−nH2, nH2]. One way to
compute this product is by segmentation: multiply the integers g(2e) and h(2e)
where e =

⌊
log2(4nH2)

⌋
, and recover gh from g(2e)h(2e). The integers g(2e) and

h(2e) have O(n log 2nH) bits. Standard integer-multiplication algorithms take time
essentially linear in n log 2nH. This approach of combining segmentation with fast
multiplication was used by Schönhage [84, Section 2], as noted in Section 3.

For reduction, one can multiply gh by a sufficiently precise approximation of
the power series 1/ϕ ∈ Z[[x−1]], round down to obtain bfg/ϕc, multiply by ϕ,
and subtract from fg to obtain fg mod ϕ. All of this is fast when ϕ and the
approximation to 1/ϕ have small coefficients. For example, if ϕ is the 1009th
cyclotomic polynomial (x1009 −1)/(x−1), then a sufficiently precise approximation
to 1/ϕ is x−1008 + x−1009. As a variant, rather than reducing gh after recovering
it from g(2e)h(2e), one can first reduce g(2e)h(2e) modulo ϕ(2e) and then recover
gh mod ϕ, provided that e is chosen large enough; see, e.g., [44, Proposition 1].

There are more details to fill in regarding the cost of computing σ, how to handle
dj > 2, etc., but the above description might make it seem plausible that one can
use any smooth tower for K to quickly compute detK

Q α. A closer look shows,
however, that multiplication is not so easy.

4.3. The challenge of multiplying quickly in subfields. The computation at
hand isn’t simply multiplying in one field Q[x]/ϕ. It’s computing an element of a
subfield of, say, half degree, and then continuing recursively with fast operations in
that subfield.

Write K = Q[x]/ϕ. Assume that θ ∈ K generates a subfield F with degF =
(degK)/2. Write ψ for the minimal polynomial of θ, and write E for the field
Q[y]/ψ. The ring morphism y 7→ θ from Q[y] to F induces an isomorphism from
E to F . Applying the inverse of this isomorphism to detK

F g ∈ F produces an
element of E, reducing the problem of evaluating detK

Q to the half-degree problem
of evaluating detE

Q . But how fast is this inverse isomorphism?
Cohen’s second textbook [35, page 65, top paragraph] considers this problem

(mentioning, as an example, taking a “relative trace or norm” from Q[x]/ϕ down
to F and representing it as an element of Q[y]/ψ) and suggests falling back to linear
algebra, treating the isomorphism as a Q-module isomorphism and inverting the
matrix for this isomorphism.

Simply looking at the matrix inverse already involves a quadratic number of
matrix entries. One might hope for a fast inversion method exploiting the structure
of this matrix; but, no, the situation is even worse.

Take, for example, ϕ = (x1009 − 1)/(x − 1), and consider the subfield F of
K = Q[x]/ϕ generated by x+ 1/x. The minimal polynomial ψ ∈ Q[y] of x+ 1/x is

y504 + y503 − 503y502 − . . .

− 91728558855094562166903996595485819919819158847006587897135695049090346490842276029300596063250047752380 y226

− · · · + 2667126y3 − 31878y2 − 252y + 1

with coefficients as large as 346 bits.
The effects that force large coefficients in this polynomial ψ also force the inverse

matrix mentioned above to have many large entries. The typical outputs of the
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inverse isomorphism are correspondingly large, no matter what method is used to
compute them. Take, e.g., the small element x500 +1/x500 = x500 +x509 of K. This
has, under the isomorphism, preimage 2T500(y/2) where Tj is the jth Chebyshev
polynomial of the first kind; 102 coefficients of this polynomial have more than 300
bits each, including 344-bit coefficients of y220, y222, y224, y226.

To summarize, the elements of Q[y]/ψ being multiplied won’t normally have
small coefficients, and ψ doesn’t have small coefficients. This breaks multiple steps
in the argument that arithmetic in this field is fast. If the original input g ∈ Q[x]/ϕ
has very large coefficients, then there isn’t much impact from the extra size of ψ
etc., but the applications motivating this paper (see Section 5) start with very small
coefficients.

4.4. The superfield representation. The inconvenience of working with “the
standard representation” of a real-cyclotomic field R∩Q(ζm) = Q(ζm + ζ−1

m ), such
as working with Q[y]/ψ for the degree-504 polynomial ψ shown above in the case
m = 1009, is not a new observation. The literature on computations in R ∩ Q(ζm)
typically represents field elements as elements of the larger field Q(ζm), which in
turn is represented as Q[x]/Φm where Φm is the mth cyclotomic polynomial.

However, this representation is redundant, for example with only 504 degrees of
freedom in the 1008 coefficients for m = 1009. Multiplying elements represented
in this way is correspondingly redundant. One cannot simply dismiss this effect as
a constant-factor slowdown: if elements of a degree-nj field Kj are represented as
elements of a degree-nt field Kt then there are nt/nj times as many coefficients as
desired, and nt/nj can be on the scale of n.

4.5. Relative representations. Cohen’s second textbook includes a chapter [35,
Chapter 2] on “basic relative number field algorithms”, saying [35, Section 2.1.1]
that, compared to representing a number field L as an extension of Q, representing
L as an extension of a nontrivial subfield K is “usually preferable”. Two reasons
stated in [35] for this preference are that

• the defining polynomial of L over K is of “lower degree” and
• “the K-structure on L gives considerably more arithmetical information

than considering L on its own”.
For example, consider again the case that Kj = Kj−1(

√
δ), where δ is a

non-square in Kj−1. The Kj−1-relative representation of Kj (to be more precise,
of the pair (Kj ,

√
δ)) is as Kj−1[x]/(x2 − δ): the polynomial α0 + α1x in Kj−1[x]

represents the element α0 + α1
√
δ of Kj . The specified generators of Kj as a

Q-vector space are simply the generators of Kj−1 followed by
√
δ times the same

generators. Extracting α0, α1 from this representation is simply extracting the first
half and the second half of the coefficients.

How quickly can one multiply two elements in the relative representation of Kj?
A standard Karatsuba-type multiplication of α0 + α1x by β0 + β1x in Kj−1[x]
involves three multiplications in Kj−1. One also incurs a multiplication by δ to
reduce modulo x2 − δ, although often one can choose δ to make this multiplication
very fast. At best this algorithm reduces a multiplication problem to three half-size
multiplication problems. If this is applied recursively in a 2-power tower then
degree-n multiplication involves nlog2 3 multiplications in Q, not counting the δ
multiplications.
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As noted in Section 1, van der Hoeven and Lecerf [59] suggested choosing towers
with superconstant relative degrees dj so as to reduce the number of base-field
multiplications to n1+o(1). One can obtain cost n(logn)O(1) for multiplications
in a tower represented in this way by requiring each layer to have multiplication
overhead (logn)O(1/t) for relative degree nΘ(1/t); this is easy for t ∈ Θ(1), but
seems hard for t ∈ Θ((logn)/log logn). See also the discussion of open problems
in [59, Conclusion]. I don’t see how this approach can obtain cost n(logn)O(1) for
computing detK

Q α with Θ(n logn) bits.

4.6. The Abelian case. From now on, let’s focus on Abelian number fields, i.e.,
Galois number fields with commutative Galois groups, and see whether this added
structure gives faster algorithms.

The Kronecker–Weber theorem states that each Abelian number field is a subfield
of some cyclotomic field Q(ζm); see, e.g., [94, Theorem 14.1]. Conversely, subfields
of cyclotomic fields are certainly Abelian. The smallest positive integer m such that
K ⊆ Q(ζm) is called the conductor of K.

(In this paper, as in [69, page 9], a “number field” is a subfield of C having finite
dimension as a Q-vector space. Often the literature defines “number field” more
broadly as a field containing Q and having finite dimension as a Q-vector space; but
this broader definition breaks typical statements of the Kronecker–Weber theorem,
such as [94, Theorem 14.1]. As a workaround, one could say that each number field
in this broader sense is isomorphic to a number field in the strict sense, so each
Abelian number field in this broader sense is isomorphic to a subfield of Q(ζm) for
some m; or, as in [61, Theorem 5.9], one could say that each Abelian number field
in this broader sense has a superfield of the form Q(ζ) where ζ is a root of unity.)

In analyses of the costs of algorithms below, I’ll ignore the cost of various
per-field precomputations. Formally, this is most easily described as existence of an
algorithm AK for each suitable field K; the cost of evaluating K 7→ AK is irrelevant
to the cost of evaluating α 7→ AK(α). In reality, optimizing the precomputation
cost could be of interest, but only in corner cases where m is much larger than
n or where there are not many computations for each K. Specifically, all of
the precomputations below take time mO(1); I’ll assume that m is nO(1), so the
precomputation time is also nO(1), which is, at least asymptotically, outweighed by
the number of detK

Q evaluations in Section 5.

4.7. The Gauss-period representation for prime conductor. Within the set
of Abelian fields, let’s start with the case of odd prime conductor p, specifically by
reviewing a standard construction of all of the subfields of Q(ζp); these all have
conductor p, except for Q, which has conductor 1.

This construction is due to Gauss. The proof that each subfield of Q(ζp) is one
of Gauss’s fields is typically presented today as an application of Galois theory, but
my impression is that this application is merely a restatement in different language
of facts that Gauss had proven in [48]. Gauss stated facts without proof for more
general cyclotomic fields (see [2]); I’ll return later to the difficulties that appear in
the general case.

4.7.1. Example: the Gauss periods for p = 17. Gauss’s ruler-and-compass
construction of a 17-gon [48, Section 354] exhibited, in essence, a tower of number
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fields Q = K0 ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4 = Q(ζ17) with degKj = 2j . Explicitly, with
ζ17 abbreviated as ζ:

• K4 has Q-basis ζ±1, ζ±2, ζ±3, ζ±4, ζ±5, ζ±6, ζ±7, ζ±8.
• K3 has Q-basis ζ+ ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, ζ4 + ζ−4, ζ5 + ζ−5, ζ6 + ζ−6, ζ7 +
ζ−7, ζ8+ζ−8. Each basis element displayed here has exponents c,−cmodulo
17 for some c; note that {1,−1} is the unique subgroup of (Z/17)∗ of order
2.

• K2 has Q-basis ζ+ ζ4 + ζ−4 + ζ−1, ζ2 + ζ8 + ζ−8 + ζ−2, ζ3 + ζ−5 + ζ5 + ζ−3,
ζ6 + ζ7 + ζ−7 + ζ−6. Each basis element displayed here has exponents
c, 4c,−4c,−c modulo 17 for some c; note that {1, 4,−4,−1} is the unique
subgroup of (Z/17)∗ of order 4.

• K1 has Q-basis ζ + ζ2 + ζ4 + ζ8 + ζ−8 + ζ−4 + ζ−2 + ζ−1, ζ3 + ζ6 + ζ−5 +
ζ7 + ζ−7 + ζ5 + ζ−6 + ζ−3. These are (−1 +

√
17)/2 and (−1 −

√
17)/2; the

field K1 is Q(
√

17).
These basis elements are called “Gauss periods” (or “Gaussian periods”), not to
be confused with “Gauss sums”, which are Fourier transforms of Gauss periods.
Beware that the literature sometimes uses the terminology “Gauss sums” for Gauss
periods; see, e.g., [12].

4.7.2. Constructing Gauss periods for any odd prime p. Let p be an odd
prime number. The field Q(ζp) has Galois group isomorphic to (Z/p)∗; each element
c ∈ (Z/p)∗ corresponds to the unique automorphism σc of Q(ζp) mapping ζp to ζc

p.
Note that this automorphism permutes the Q-basis ζp, ζ

2
p , . . . , ζ

p−1
p of Q(ζp).

The group (Z/p)∗ is a cyclic group with #(Z/p)∗ = p − 1, so, for each divisor
d of p − 1, there is a unique subgroup H of (Z/p)∗ with #H = d. The fixed field
of the corresponding group of automorphisms is the unique subfield F of Q(ζp) of
degree (p− 1)/d.

Explicitly, the Gauss period ζj
p + ζcj

p + ζc2j
p + · · · + ζcd−1j

p , where j ∈ (Z/p)∗ and
d is the order of c in (Z/p)∗, is in the fixed field F of σc; it is exactly trQ(ζp)

F ζj
p.

The set {trQ(ζp)
F ζj

p : j ∈ (Z/p)∗} is a Q-basis set for F . This follows from the fact
that

{
ζj

p : j ∈ (Z/p)∗}
is a Q-basis set for Q(ζp). The point is that σc maps α =∑

j∈(Z/p)∗ αjζ
j
p to

∑
j∈(Z/p)∗ αjζ

cj
p =

∑
j∈(Z/p)∗ αj/cζ

j
p, so σc fixes α exactly when

αj = αj/c for each j, i.e., exactly when j 7→ αj is constant on orbits of multiplication
by c.

The Q-basis ζp, ζ
2
p , . . . , ζ

p−1
p of Q(ζp) is an integral basis: its Z-span is Z[ζp], the

ring of integers of Q(ζp). Consequently the Gauss-period basis for each subfield of
Q(ζp) is an integral basis for that subfield.

Another important feature of the Gauss-period basis is that one can efficiently
compute conjugates of field elements represented as Q-linear combinations of Gauss
periods. For the same reason, the representation is subfield-compatible (and hence
compatible with any given tower of subfields): if K ⊆ L are subfields of Q(ζp) then
one can efficiently (1) map an element of K from K’s Gauss-period representation
to L’s Gauss-period representation, and (2) invert this map on its image.

4.8. Multiplication algorithms for the Gauss-period representation for
prime conductor. Bach and Shallit [7, Section 4, “period basis”], crediting
Lenstra, used the Gauss-period basis for computations in an Abelian field K of
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prime conductor p. The multiplication algorithm in [7] for this basis has cost cubic
in the degree of K.

Gao, von zur Gathen, and Panario [47, Section 3] instead used the superfield
representation of elements of K as elements of Q(ζp), giving multiplication cost
essentially linear in p. This cost can be much smaller than cubic in the degree of
K, but can also be much larger: consider, as an extreme example, the quadratic
field K = Q(√p).

The general issue here was noted in [7, page 206, “we would like to avoid using
the larger field”]; the issue for Q(√p) was noted in [29, Section 7, first paragraph].
This was not a big issue for [47]. The goal of [47] was to multiply in Fq for a given
prime power q; the strategy in [47] was to represent Fq as a quotient of a degree-n
subring of Q(ζp); in this context, one can safely restrict attention to the case that
p− 1 is not much larger than n. However, if the goal is instead to evaluate detQ(ζp)

Q
via a smooth tower of subfields of Q(ζp) then one ends up considering subfields of
many degrees, with similar data volume in each degree, so one cannot ignore the
gap between the degree and p− 1.

Let’s look more closely at known essentially-linear-time multiplication algorithms
for Q(ζp). A conventional FFT modulo xm − 1, where m is a power of 2 above
2p, works with the additive structure of the exponent group Z/m. A different
essentially-linear-time DFT algorithm, introduced by Rader in [82], instead works
with the multiplicative structure of (Z/p)∗—and we’ll see in a moment that Rader’s
algorithm can easily take advantage of the symmetries of the Gauss-period basis
for a subfield of Q(ζp).

See Appendix A for software to double-check the main algorithms presented here.

4.8.1. Rader’s FFT. The goal is to compute a size-p DFT over a ring R where
p is an odd prime: i.e., to compute g(1), g(ζ), . . . , g(ζp−1) given g ∈ R[x] with
deg g < p, where ζ is a primitive pth root of 1 in R.

Write g as g0 +g1x+ · · ·+gp−1x
p−1. Rader handles g0 separately (simply adding

g0 to each output), and handles g(1) separately, easily reducing to the problem of
computing g(ζ), . . . , g(ζp−1) where g = g1x + · · · + gp−1x

p−1. Let’s now focus on
that problem.

View g as an element of the group ring R[Z/p]; i.e., view the indices of g as
elements of Z/p. Let ω be a generator of (Z/p)∗. Then

g(ζωb

) =
∑

j∈(Z/p)∗

gjζ
ωbj =

∑
a∈{0,1,...,p−2}

gω−aζωb−a

.

In other words, Ob =
∑

a IaZb−a, where Ia = gω−a , Zb = ζωb , and Ob = g(ζωb):
the output sequence O is a length-(p−1) cyclic convolution of the input sequence I
and the constant sequence Z, i.e., a product in the group ring R[Z/(p− 1)]. Rader
concludes by pointing to essentially-linear-time subroutines for cyclic convolution.

4.8.2. Inverting Rader’s FFT. The standard principle that a DFT with
exponents negated is an inverse DFT, aside from scaling by a constant factor,
means that one can use a DFT algorithm for an inverse DFT without inspecting
the details of the algorithm. However, seeing how to merge this principle into the
details of Rader’s algorithm turns out to be useful for the generalized algorithms
in Sections 4.8.4 and Section 4.12.4.
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The details are as follows. Again handle g0 and g(1) separately, easily reducing
to the problem of recovering g = g1x + · · · + gp−1x

p−1 given g(ζ), . . . , g(ζp−1),
i.e., recovering the above sequence I from the above sequence O. Define Z ′

b =
(Z(p−1)/2−b − 1)/p. The following calculation, where the indices a, b range over
Z/(p− 1), shows that Z has a convolution inverse, specifically Z ′:

p
∑

a

ZaZ
′
b−a =

∑
a

ζωa

(ζω(p−1)/2+a−b

− 1)

=
∑

a

ζωa

ζ−ωa−b

−
∑

a

ζωa

=
∑

a

ζ(1−ω−b)ωa

−
∑

a

ζωa

.

This last quantity is, as desired, p if b = 0, else 0; the point is that
∑

a ζ
sωa is p− 1

if s = 0, else −1. Hence convolution with Z ′ is deconvolution with Z; in particular,
I is the convolution of O and Z ′.

4.8.3. Exploiting input symmetries in Rader’s FFT. If g is real, meaning
that gj = g−j for each j ∈ (Z/p)∗, then g(ζc) = g(ζ−c). In other words, if the input
sequence I is periodic with period (p − 1)/2, then the output sequence O is also
periodic with period (p − 1)/2. One can exploit this twofold symmetry by folding
the Z sequence: one has

Ob =
∑

a

IaZb−a =
∑

0≤a<(p−1)/2

IaZb−a +
∑

(p−1)/2≤a<p−1

IaZb−a

=
∑

0≤a<(p−1)/2

Ia(Zb−a + Zb−a+(p−1)/2) =
∑

0≤a<(p−1)/2

IaYb−a

where Yb = Zb +Zb+(p−1)/2. This expresses the first half of O as a length-((p−1)/2)
cyclic convolution of Y and the first half of I.

More generally, fix a positive integer d dividing p− 1, and say gj = gjωd for all
j ∈ (Z/p)∗. (The previous paragraph is the case d = (p − 1)/2.) Then the input
and output sequences are periodic with period d, and are determined by their first
d entries, i.e., the entries at positions 0 through d − 1. The first d entries of the
output O are a length-d cyclic convolution of Y and the first d entries of I, where
now Yb = Zb +Zb+d +· · ·+Zb+p−1−d. The number of operations in this convolution,
after precomputation of the Y sequence, is essentially linear in d: more precisely,
d(log d)1+o(1).

This folded generalization of Rader’s FFT algorithm is not new. Arita and
Handa [6, Sections 3.3–3.4] considered the Gauss-period basis of a subfield of Q(ζp)
(not mentioning that these are Gauss periods), considered DFTs (under another
name) of elements of the subfield, and expressed these DFTs as convolutions (not
mentioning Rader’s algorithm).

4.8.4. Inverting a folded Rader FFT. Define Y ′
b = Z ′

b+Z ′
b+d+· · ·+Z ′

b+p−1−d =
(Y(p−1)/2−b − (p − 1)/d)/p. Then Y ′ is the convolution inverse of Y : the folding
map from the group ring R[Z/(p− 1)] to R[Z/d] maps Z to Y , maps Z ′ to Y ′, and
maps the equation ZZ ′ = 1 to the equation Y Y ′ = 1. Convolution with Y ′ thus
inverts the folded Rader algorithm from Section 4.8.3.

In other words: Consider the problem of recovering, from the input described
in a moment, a polynomial g ∈ R[x] with deg g < p, with g(0) = 0, and with the
periodicity gj = gjωd for all j ∈ (Z/p)∗, where indices are again interpreted as
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elements of Z/p. The input consists of the first d entries of the d-periodic sequence
O defined by Ob = g(ζωb); i.e., the values of g at ζ, ζω, ζω2

, . . . , ζωd−1 .
To solve this problem, simply apply a length-d cyclic convolution of the input

sequence with Y ′, obtaining the first d entries of the sequence I defined by Ia =
gω−a . These entries are the coefficients of g on the R-basis

xω0
+ xωd

+ xω2d

+ · · · + xωp−1−2d

+ xωp−1−d

,

xω−1
+ xωd−1

+ xω2d−1
+ · · · + xωp−2−2d

+ xωp−2−d

,

...,

xω1−d

+ xω1
+ xωd+1

+ · · · + xωp−3d

+ xωp−2d

.

Note that replacing x with ζp in these formulas produces the Gauss periods.
Combining the folded Rader FFT with the inverse folded Rader FFT produces a

fast multiplication algorithm for this type of periodic polynomial. One is given
two periodic polynomials f, g; one uses the folded Rader FFT to evaluate the
polynomials at ζ, ζω, ζω2

, . . . , ζωd−1 ; one then multiplies pointwise and uses the
inverse folded Rader FFT to interpolate, obtaining a periodic polynomial h with
the same values as f, g. The periodicity implies that h has the same values as fg
at all powers of ζ, so h = fg in R[x]/((xp − 1)/(x − 1)). All of this takes just
d(log d)1+o(1) operations in R, after precomputation of the Y sequence.

4.8.5. Integers as a base ring. Again fix a positive integer d dividing p − 1.
Consider d-periodic polynomials g ∈ Z[x], defined as polynomials g ∈ Z[x] satisfying
deg g < p, g(0) = 0, and gj = gjωd for all j ∈ (Z/p)∗, with indices interpreted
as elements of Z/p. As above, represent d-periodic polynomials on the period
basis: i.e., represent g as the sequence g1, gω−1 , . . . , gω1−d . Consider the problem
of multiplying d-periodic polynomials: given d-periodic f, g, find d-periodic h with
h = fg in Z[x]/((xp − 1)/(x− 1)).

This problem for Z reduces immediately to the same problem for Z/M , if the
modulus M is chosen large enough to ensure that the coefficients of h in Z can
be recovered from their images in Z/M . An easy way to measure “large enough”
is to note that the maximum possible coefficient of h in absolute value is 2p − 3
times the maxima for f and g; the factor 2p − 3 fits into Θ(log p) bits, and the
same factor across all O(p) coefficients fits into O(p log p) bits, a bound sufficiently
small for this paper’s analyses. One can, with more work, compute bounds that
are better for most inputs—for example, one can evaluate f and g at 1, and more
generally use low-precision complex embeddings to estimate sizes, as mentioned in
Section 3.3—but a logarithmic factor is to be expected, as explained in Section 2.

The reason to reduce to Z/M is that one can also choose M to ensure that Z/M
has the primitive roots of 1 needed for the folded Rader FFT. Concretely, take M
as a product of distinct primes q ∈ 1 + pdZ. Then Z/M contains a primitive pth
root of 1 for defining the DFT in the first place, and, less importantly, contains a
primitive dth root of 1 so that the length-d cyclic convolutions inside a folded Rader
FFT can in turn be handled by traditional FFTs when d is smooth. Given the goal
of using folded Rader FFTs, this reduction is the obvious adaptation of a widely
used reduction suggested by Pollard [78], independently Nicholson [74, page 532],
and independently Schönhage–Strassen [85], namely reducing modulo products of
primes q ∈ 1 + 2kZ to support traditional size-2k FFTs.
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There is a logarithmic inefficiency in this reduction when d and M are both large.
Specifically, there are d(log d)1+o(1) multiplications in Z/M , and each multiplication
in Z/M uses b(log b)1+o(1) bit operations ifM has b bits, so there are two logarithmic
factors in the total cost on top of the output size bd. Recall that the usual scenario
considered in this paper is bd ∈ Θ(n logn); very often d is between n0.1 and n0.9,
implying bd(log b)1+o(1)(log d)1+o(1) = n(logn)3+o(1). Let’s see how to do better,
saving a logarithmic factor and reaching cost bd(log bd)1+o(1) = n(logn)2+o(1).

What does not seem to save this logarithmic factor is working separately modulo
each prime factor q ofM , along with choosing each q small enough to have log log q ∈
(logn)o(1), as in Section 3.2. This would reduce the total cost of the folded Rader
FFTs across each Z/q to n(logn)2+o(1); but how does one reduce Z/M to

∏
q(Z/q)

in the first place? Standard algorithms for this reduction, and for the corresponding
interpolation at the end of the multiplication, have two logarithmic factors, one for
multiplications and one for the height of a product tree. See, e.g., [16, Sections 18
and 23]. This issue did not arise in Section 3.2: each reduction there started from
small input coefficients, and interpolation used only one large coefficient.

What does save a logarithmic factor, as in Sections 3.3 and 4.2, is segmentation.
It is important here that the folded Rader FFT is simply carrying out a convolution.
Segmentation converts length-d convolution over Z/M , where M has b bits, into
O(bd)-bit multiplication, costing bd(log bd)1+o(1) bit operations. It suffices here to
take M as a product of distinct primes q ∈ 1 + pZ.

4.8.6. Application to det evaluation. If K is a degree-n subfield of Q(ζp), and
if K has a smooth tower (i.e., if n factors into small enough primes), then computing
detK

Q α costs n(logn)3+o(1) in the same Θ(n logn)-bit scenario. Each step through
the tower costs n(logn)2+o(1) (see Section 4.8.5), and there are (logn)1−o(1) steps.

As a concrete example, the prime p = 1009 has p − 1 = 2 · 2 · 2 · 2 · 3 · 3 · 7, so
one can compute detK

Q α for K = Q(ζ1009) by a series of multiplications in subfields
of K of degrees 1008, 504, 252, 126, 63, 21, 7, using the Gauss-period representation
of each subfield, using cyclic convolutions of lengths 1008, 504, 252, 126, 63, 21, 7
respectively to compute the underlying DFTs.

(In this example, one could also use the prime factors of p − 1 in the opposite
order, or any other order. In general, for each K, all smooth towers for K have
the same performance at the level of detail of this paper’s analysis. This is not
saying that the towers have exactly the same performance; the analysis absorbs all
(logn)o(1) factors.)

This application of folded Rader FFTs to fast detK
Q α computation seems to

be new. A helpful speedup in this context is to push conjugation and subfield
extraction through the DFTs: to compute detKj

Kj−1
αj , apply a Kj-folded DFT to

αj , fold the result dj times, and apply a Kj−1-folded inverse DFT.
If one is starting from a very large p and a relatively small subfield of Q(ζp)

then the Y precomputation stated above could be a bottleneck. Each Yb is a Gauss
period, with ζ ∈ R substituted for ζp; presumably it is possible in time nO(1) to
identify the defining equation of the subfield in question and solve for a suitable
system of Yb values (a weak form of reciprocity) without even computing ζ. But
such speedups are not necessary for this paper: recall from Section 4.6 that m is
assumed to be nO(1), and that per-field precomputation cost is not included.
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4.9. Arbitrary conductor: difficulties and desiderata. What about arbitrary
Abelian number fields, i.e., subfields of arbitrary cyclotomic fields Q(ζm), without
the constraint of m being prime?

The general case is not as easy as the prime case. The group (Z/m)∗ is not cyclic
in general, although if one splits m into prime-power components then non-cyclic
components can appear only for the power of 2. More fundamentally, there are
many m for which {ζj

m : j ∈ (Z/m)∗} is not a Q-basis set for Q(ζm): for example,
ζ4 = i and ζ3

4 = −i do not form a Q-basis for Q(ζ4), and ζ8, ζ
3
8 , ζ

5
8 , ζ

7
8 do not form a

Q-basis for Q(ζ8). If one starts with a basis 1, ζ8, ζ
2
8 , ζ

3
8 for Q(ζ8) and takes traces

down to Q(ζ4) then one obtains 2, 0, 2ζ4, 0; the nonzero traces 2, 2ζ4 form a Q-basis
for Q(ζ4) but not an integral basis.

Traces from Q(ζm) to K can behave suboptimally even when K has conductor
m. Take, for example, m = 8 and K = R∩Q(ζ8). The integral basis 1, ζ8, ζ

2
8 , ζ

3
8 of

Q(ζ8) has trace 2, ζ8 + ζ−1
8 , ζ2

8 + ζ−2
8 , ζ3

8 + ζ−3
8 , which is not exactly an integral basis

of K. On the other hand, replacing each trace with the sum of distinct conjugates
replaces 2 with 1, giving an integral basis. Breuer [29], crediting Hiss and Lenstra,
gave an explicit integral basis for every Abelian number field; see [29, Corollary 2]
for cases handled by the trace, [29, Lemma 4] for cases handled by sums of distinct
conjugates (and not by the trace), and [29, Lemma 3] for the the fact that these
cover all cases. See Section 4.12 for more on this construction.

Breuer’s stated objective [29, Section 1] was to find an integral basis of each
Abelian field that allows efficient arithmetic and efficiently finding “for an arbitrary
element of a cyclotomic field the basis representation in the smallest possible field”.
This description considers only moving from Q(ζm) to a subfield, but it is natural
to consider moving more generally from K to L and from L to K whenever K ⊆ L
are subfields of Q(ζm). In detK

Q evaluation via towers, it is important to be able to
efficiently move from a subfield Kj to a smaller subfield Kj−1.

4.10. A sub-cyclotomic-field-compatible integral basis for each
cyclotomic field. This subsection reviews one component of the construction from
[29]: an integral basis for Q(ζm) introduced by Zumbroich [97] and independently
Bosma [26]. As Bosma put it [26, Section 1], this basis allows one to efficiently
find “the smallest cyclotomic field in which a given sum of roots of unity lies”.
Arithmetic using this basis was implemented in, respectively, CAS, which was
later superseded by GAP, and Cayley, which was later superseded by Magma. The
GAP implementation is available in Sage as UniversalCyclotomicField.

For each prime p and each positive integer e, choose a set Ip,e of pe−1 consecutive
integers: e.g., the set {1, 2, . . . , pe−1}. Define Spe ⊆ Z/pe as the complement of the
image of Ip,e in Z/pe. The specified integral basis set for Q(ζpe) is {ζj

pe : j ∈ Spe}.
In other words, starting from ζZpe , one removes some arc consisting of 1/p of the
circle.

More generally, for each positive integer m, define Sm ⊆ Z/m as the set of
images in Z/m of all j ∈ Z such that, for each prime divisor p of m, the set
j − (m/pe)Ip,e = {j − (m/pe)s : s ∈ Ip,e} is disjoint from peZ, where e = ordp m
(i.e., m ∈ peZ and m /∈ pe+1Z). The specified integral basis set for Q(ζm) is
{ζj

m : j ∈ Sm}. This no longer has the arc description.
For example, take m = 12, and choose Ip,e =

{
0, 1, . . . , pe−1 − 1

}
; in particular,

I2,2 = {0, 1} and I3,1 = {0}. The allowed exponents j then avoid 4Z + 3I2,2 =
4Z + {0, 3}, and avoid 3Z + 4I3,1 = 3Z, so S12 = {1, 2, 5, 10}.
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There are two steps in showing that this is an integral basis set. First, this set
has the right number of elements. To see this, observe that if p is a prime divisor
of m and e = ordp m then the set (m/pe)Ip,e consists of pe−1 distinct integers
modulo pe. The condition peZ ∩ (j − (m/pe)Ip,e) = {} thus excludes exactly pe−1

choices of j modulo pe. These conditions are independent across p, leaving exactly∏
p(pe − pe−1) = #(Z/m)∗ choices of j ∈ Sm; and the map j 7→ ζj

m on Sm is
injective.

Second, one can express any element of Z[ζm] as a Z-linear combination of ζj
m

for j ∈ Sm. The proof is constructive. Write the input as
∑

a∈Z/m αaζ
a
m. For each

prime divisor p of m (in, say, increasing order), define e = ordp m, and eliminate
all a ∈ Z/m such that a − (m/pe)Ip,e includes a multiple of pe as follows: use the
identity 1 = −ζp − · · · − ζp−1

p , together with ζp = ζ
m/p
m , to rewrite ζa

m as −
∑

b ζ
b
m

where b ranges over {a+m/p, . . . , a+ (p− 1)m/p}. Here is why this works:
• The set b − (m/pe)Ip,e cannot include a multiple of pe for any of the new

exponents b. (If it does then the difference (b − a) − (m/pe)(Ip,e − Ip,e)
includes a multiple of pe, say (b − a) − (m/pe)∆ where ∆ ∈ Ip,e − Ip,e.
This is also a multiple of m/pe—since by construction b − a is a multiple
of m/p—and hence a multiple of m, i.e., 0 in Z/m. Hence (m/pe)∆ is a
multiple of m/p, so ∆ is a multiple of pe−1; but the only multiple of pe−1

in Ip,e − Ip,e =
{

−pe−1 + 1, . . . , pe−1 − 1
}

is 0, so ∆ = 0, so b = a, but by
construction b 6= a, contradiction.)

• This property is preserved by any subsequent rewrites, i.e., replacements
of ζb with ζc where c− b is a multiple of m/p′ for a prime p′ 6= p. (Indeed,
c− b is a multiple of pe, so if c− (m/pe)Ip,e includes a multiple of pe then
b− (m/pe)Ip,e also includes a multiple of pe.)

For each p, there are m/p exponents a ∈ Z/m that require rewrites (if they appear
in the input), and each rewrite takes O(p) operations, for a total of

∑
p O(m)

operations; this is O(m(logm)/log logm) by the prime-number theorem. Also, each
layer of rewriting converts B-bit coefficients into at most (B + 1)-bit coefficients,
and there are at most log2 m layers of rewriting.

The choice Ip,e =
{

1, 2, . . . , pe−1}
has the properties Ip,e ∩ peZ = {} and pIp,e =

pZ ∩ Ip,e+1. One can then see that the basis for any divisor of m is included in
the basis for m, making it trivial to recognize elements of smaller cyclotomic fields.
These bases are what Bosma [26] calls “canonical bases for cyclotomic fields”.

GAP instead takes Ip,e as
{

−(pe−1 − 1)/2, . . . , (pe−1 − 1)/2
}

for odd p, and{
2e−1, . . . , 2e − 1

}
for p = 2. The choice 0 ∈ Ip,1 for odd p gives, e.g., basis

ζp, ζ
2
p , . . . , ζ

p−1
p for Q(ζp). This does not include a basis element for Q: recognizing

the subfield Q requires checking for equal coefficients as in [29, Corollary 3]. The
advantage of this basis, as in Section 4.8, is that conjugation is as easy as possible.

One can freely use one choice of Ip,e to simplify conjugation and another choice
of Ip,e to simplify subfield detection, since it is efficient to rewrite any input using
any given choice of Ip,e. Also, given a rewriting function for one choice of Ip,e,
one can conjugate the input by a power of ζm to obtain a rewriting function for a
rotated basis, i.e., a rotated choice of Ip,e.

4.11. Cyclotomic fields of smooth conductor. Consider computing detK
Q via

a smooth tower of cyclotomic fields Q = Q(ζm0) ⊂ Q(ζm1) ⊂ · · · ⊂ Q(ζmt) = K.
This setup requires mt to be smooth, which is more restrictive than merely requiring
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Q(ζmt
) to have smooth degree; on the other hand, this avoids the prime-conductor

requirement from Section 4.8.
If each Kj = Q(ζmj ) is represented as in Section 4.10 then it is easy to convert

elements of Kj−1 from the Kj representation to the Kj−1 representation. It is also
easy to convert the input, a small element of Z[ζmt

], to the Kt representation. One
obvious way to compute detKj

Kj−1
αj , given αj ∈ Kj , is to multiply σ(αj) across the

automorphisms σ of Kj that fix Kj−1, as in Section 3.7. The remaining question
is how long conjugation and multiplication take in this Kj representation.

Expanding the allowed set of exponents from Sm in Section 4.10 to Z/m makes
conjugation easy, simply permuting Z/m, and reduces multiplication to the problem
of multiplying modulo xm − 1, using m(logm)1+o(1) coefficient operations. The
rewriting operation from Section 4.10, reducing the set of exponents from Z/m to
Sm, uses at most m(logm)1+o(1) coefficient operations.

In terms of the degree n of Q(ζm), these costs are n(logn)1+o(1), since the ratio
n/m is (logn)o(1). (More precisely, n/m ≥ Θ(1/log logn). This is a standard
calculation that runs as follows. First, n/m is the product of 1 − 1/p over prime
divisors p of m. Choose a positive integer y so that the number of primes p ≤ y
is the number of prime divisors of m; then n/m is at least the product of 1 − 1/p
over primes p ≤ y, which is Θ(1/log y) by Mertens’s theorem, while m is at least∏

p≤y p, so logm is at least Θ(y) by the prime-number theorem. This gives n/m ≥
Θ(1/log logm), also implying Θ(log logn) = Θ(log logm).)

As before, this gives total cost n(logn)3+o(1) in the Θ(n logn)-bit scenario. This
case does not need Rader’s FFT.

4.12. Using more subgroups. Let’s now unify the ideas of Sections 4.8 and 4.11:
handling K = Q(ζm) for any m using any tower of subgroups of (Z/m)∗, without
requiring the subgroups to correspond to cyclotomic subfields.

4.12.1. Multicyclic convolution. The following paragraphs review a standard
unification of conventional FFTs with fast Hadamard–Walsh transforms.

Let R be a ring. Let t be a nonnegative integer. Let d1, d2, . . . , dt be integers
with dj ≥ 2. Write n = d1d2 · · · dt. Let ζ ∈ R be a primitive nth root of 1. Let
e1, e2, . . . , et be nonnegative integers. Assume that e1 ∈ nZ if t ≥ 1. Let x0 be a
unit in R. The goal here is to multiply quickly in the ring

Rt = R[x1, x2, . . . , xt]/(xd1
1 − xe1

0 , x
d2
2 − xe2

1 , . . . , x
dt
t − xet

t−1),

with the conventional representation of ring elements as polynomials of degree below
dj in xj .

If dj has a prime factor p < dj then one can replace the modulus xdj

j −x
ej

j−1 with
the moduli yp − x

ej

j−1, x
dj/p
j − y where y is a new variable, obtaining a problem of

the same form with dj replaced by p, dj/p. So it suffices to consider the case that
d1, d2, . . . , dt are primes. Primality does not matter for the algorithm statement,
but the cost analysis says that smaller dj is better.

The multicyclic case, which is the case used in subsequent sections, is the case
that ej = 0 for all j; in other words, multiplication in the group ring R[G], where G
is any finite commutative group. But it is also important to consider non-multicyclic
cases to enable the speedup from the previous paragraph.



30 DANIEL J. BERNSTEIN

The algorithm applies an FFT, a fast isomorphism from Rt to Rn; multiplies in
Rn, which is simply n separate multiplications in R; and applies an inverse FFT to
recover the product in Rt.

For t = 0, there is nothing to do, so assume t ≥ 1. The first layer of the FFT
algorithm proceeds as follows.

Consider the ring morphism R[z]/(zd1 − 1) → Rd1 where coordinate c of
the output, for 0 ≤ c < d1, maps z to ζcn/d1 . This is a textbook size-d1
DFT, straightforwardly computable using Θ(d2

1) operations in R. This is also
straightforwardly invertible using Θ(d2

1) operations in R, since d1 is invertible in R
by definition of primitive roots.

(One can improve these Θ(d2
1) operation counts by substituting more complicated

DFT algorithms. However, this paper will apply multicyclic convolution to smooth
towers, and then d1 is (logn)o(1), so d2

1 is also (logn)o(1). At that level of detail,
the exponent of d1 in the operation count does not matter.)

By assumption e1 ∈ nZ, so in particular e1 ∈ d1Z. The ring morphism R[x1] →
R[z]/(zd1 − 1) mapping x1 to xe1/d1

0 z is invertible since x0 is a unit, and induces a
ring morphism R[x1]/(xd1

1 − xe1
0 ) → R[z]/(zd1 − 1), straightforwardly computable

and invertible using Θ(d1) operations in R once the necessary powers of x0 have
been precomputed. Composing this morphism with the DFT gives a ring morphism
R[x1]/(xd1

1 − xe1
0 ) → Rd1 that maps x1 to xe1/d1

0 ζcn/d1 in the cth coordinate.
Applying this layer to the whole ring

Rt = R[x1, x2, . . . , xt]/(xd1
1 − xe1

0 , x
d2
2 − xe2

1 , x
d3
3 − xe3

2 , . . . , x
dt
t − xet

t−1),
uses Θ(d1n) operations and gives a product of d1 rings of the form

R[x2, . . . , xt]/(xd2
2 − x

e2e1/d1
0 ζe2cn/d1 , xd3

3 − xe3
2 , . . . , x

dt
t − xet

t−1).
Each of these rings now has the same structure as Rt, except for t being reduced

by 1. The point is that xe2e1/d1
0 ζe2cn/d1 can be expressed as a d2 · · · dtth power, since

e2e1/d1 and e2cn/d1 are multiples of d2 · · · dt; also, ζd1 is a primitive d2 · · · dtth root
of 1. The rest of the DFT proceeds recursively, using a total of Θ((d1 + · · · + dt)n)
operations in R. The inverse also uses Θ((d1 + · · · + dt)n) operations in R.

The cost is at least Θ(n logn). If each dj is bounded by, say, s then the
cost is O(sn logn). In particular, multiplication in R[G], where G is any finite
commutative group whose cardinality n = #G factors into primes at most s, uses
O(sn logn) operations in R.

Often a primitive nth root of 1 is overkill; it is easy to compute the roots that are
actually required given the sequence d1, d2, . . . , dt, e1, e2, . . . , et. In the multicyclic
case, the algorithm uses only a primitive rth root of 1 for r = lcm{d1, d2, . . . , dt}.
In the balanced multicyclic case, where d1 = d2 = · · · = dt, one has r = d1,
usually much smaller than n = dt

1. The Hadamard–Walsh transform is a multicyclic
transform with d1 = d2 = · · · = dt = 2, and needs only a primitive 2nd root of 1:
i.e., the root −1, with 2 invertible in R.

4.12.2. Multicyclic convolution with large coefficients. Consider now the
problem of multicyclic convolution over Z, i.e., the problem of multiplying in
Z[x1, . . . , xt]/(xd1

1 − 1, . . . , xdt
t − 1). Again write n = d1 · · · dt.

One can reduce multicyclic convolution over Z/M to this problem of multicyclic
convolution over Z, at the expense of reducing each output coefficient separately
modulo M , which costs O(nb log b) if M has b bits. Conversely, one can reduce
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multicyclic convolution over Z to multicyclic convolution over a quotient Z/M
selected (1) to be sufficiently large to recover the output coefficients in Z and (2)
to have appropriate primitive roots of 1 for the standard multicyclic FFTs from
Section 4.12.1.

However, even in the smooth case, those multicyclic FFTs involve n(logn)1+o(1)

operations in Z/M . Many of those operations are multiplications (except in extreme
cases such as Hadamard–Walsh transforms), each taking b(log b)1+o(1) operations if
M has b bits. As in Section 4.8.5, there is an inefficiency here when both b and n are
large. A straightforward use of segmentation replaces the two logarithmic factors
with one logarithmic factor times something exponential in t; this was satisfactory
in Section 4.8.5, with t = 1, but is not satisfactory in general. One can try to reduce
t by replacing d1, . . . , dt with the elementary divisors of the group Z/d1 ×· · ·×Z/dt,
but this is not helpful for, e.g., the case d1 = · · · = dt = 3.

To do better, one can inspect standard algorithms for fast integer multiplication
(see, e.g., [13]) and observe that many, if not all, of the same ideas naturally
support multicyclic convolution. State-of-the-art multicyclic convolution as in [56]
is generally more complicated than necessary for this paper, since this paper,
unlike [56], freely allows (logn)o(1) factors; the following paragraphs explain a
simpler algorithm. No claims of novelty are made here.

One of the Schönhage–Strassen [85] algorithms to multiply in Z is as follows.
There are three parameters: a positive integer κ, a positive integer c ∈ Θ(log κ),
and a prime number p ∈ 1 + κZ having Θ(log κ) bits. Map Z to Z[y]/(2c − y)
and lift to Z[y], splitting each input into coefficients between −2c−1 and 2c−1; map
to Z[y]/(yκ − 1); map to (Z/p)[y]/(yκ − 1); use a length-κ FFT to multiply in
(Z/p)[y]/(yκ − 1). Each product coefficient has absolute value at most 22c−2κ,
so if p > 22c−1κ (which is compatible with p having Θ(log κ) bits) then one easily
recovers the product in Z[y]/(yκ −1), and if the output polynomial needed y-degree
at most κ− 1 then one easily recovers the original product in Z.

Typically κ is chosen as a power of 2, so that a traditional power-of-2 FFT
uses Θ(κ log κ) operations in Z/p. Each operation in Z/p uses (log κ)1+o(1) bit
operations, since p has Θ(log κ) bits. The overall cost is thus κ(log κ)2+o(1) for
outputs fitting into Θ(κ log κ) bits; i.e., b(log b)1+o(1) for outputs fitting into b bits.

To handle multicyclic convolution in the same way, take a positive integer
κ, a positive integer c ∈ Θ(log κn), and a prime number p ∈ 1 + κnZ having
Θ(log κn) bits, with p > 22c−1κn. Map the ring Z[x1, . . . , xt]/(xd1

1 − 1, . . . , xdt
t − 1)

to the ring (Z[y]/(2c − y))[x1, . . . , xt]/(xd1
1 − 1, . . . , xdt

t − 1) and lift to the ring
Z[y, x1, . . . , xt]/(xd1

1 − 1, . . . , xdt
t − 1), splitting each of the input coefficients into

polynomials in y with coefficients between −2c−1 and 2c−1. Then map to the ring
Z[y, x1, . . . , xt]/(yκ − 1, xd1

1 − 1, . . . , xdt
t − 1) and further to the ring

(Z/p)[y, x1, . . . , xt]/(yκ − 1, xd1
1 − 1, . . . , xdt

t − 1).

Each product coefficient has absolute value at most 22c−2κn, so one recovers the
product in Z[y, x1, . . . , xt]/(yκ − 1, xd1

1 − 1, . . . , xdt
t − 1), and thus the product in

Z[y, x1, . . . , xt]/(xd1
1 − 1, . . . , xdt

t − 1) assuming it has y-degree at most κ − 1, and
thus the product in Z[x1, . . . , xt]/(xd1

1 − 1, . . . , xdt
t − 1).

The product in (Z/p)[y, x1, . . . , xt]/(yκ − 1, xd1
1 − 1, . . . , xdt

t − 1) can be handled
as explained in Section 4.12.1 if p ∈ 1+κnZ. This uses O(sκn log κn) operations in
Z/p if κn factors into primes at most s. Each operation in Z/p uses (log κn)1+o(1)
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bit operations, so the overall cost is at most sκn(log κn)2+o(1) bit operations for
n output coefficients each fitting into Θ(κ log κn) bits. For this paper, one should
think of s as being small: the smooth case emphasized in this paper is that n
factors into small primes, and one can easily choose κ within any desired range to
also factor into small primes.

The applications below focus on reducing various types of FFTs over rings
R to multicyclic convolutions, generalizing Section 4.8. The application to det
computation takes rings R of the form Z/M , where M is generally chosen larger
and larger as one moves down a tower; one always has b ≥ Θ(logn), where b
is the number of bits in M . One can handle the multicyclic convolutions by
the algorithm in the previous two paragraphs, taking κ as b/Θ(log bn), so κn
is bn/Θ(log bn) = bn/Θ(log κn). The overall cost is then sbn(log bn)1+o(1) bit
operations for n output coefficients each fitting into Θ(b) bits. This saves a log
factor as desired.

4.12.3. A primitive size-m FFT. Let m be a positive integer. Let R be a ring.
Let ζ be a primitive mth root of 1 in R. Write G = (Z/m)∗. Consider the ring
morphism R[x] → RG that maps g to the vector b 7→ g(ζb). The main objective
here is to efficiently apply this morphism to g = g0 + g1x+ · · · + gm−1x

m−1, given
g0, g1, . . . , gm−1 ∈ R.

This morphism is a “primitive DFT”. This is, for m > 1, different from a
traditional “full DFT”. The difference is that a full DFT evaluates g at ζb for
all b ∈ Z/m, while a primitive DFT evaluates g at ζb only for b ∈ (Z/m)∗, i.e., only
for b coprime to m.

Note that multiplication in Z/m restricts to an action of the group G on Z/m,
with one orbit (m/d)(Z/d)∗ for each positive divisor d of m: for example, this
orbit is (Z/m)∗ for d = m, and {0} for d = 1. The notation (m/d)(Z/d)∗ here
uses multiplication by m/d as notation for the map from Z/d to Z/m induced by
multiplication by m/d as a map from Z to Z.

For each positive divisor d of m, define Id as the element
∑

a∈(Z/d)∗ g(m/d)aa
−1

of the group ring R[(Z/d)∗], and Zd as the element
∑

b∈(Z/d)∗ ζ(m/d)bb of the group
ring; i.e., these are the vectors a 7→ g(m/d)a−1 and b 7→ ζ(m/d)b. Write Od for the
product IdZd. Then

Od =
∑

a∈(Z/d)∗

∑
b∈(Z/d)∗

g(m/d)aa
−1ζ(m/d)bb =

∑
a∈(Z/d)∗

∑
b∈(Z/d)∗

g(m/d)aa
−1ζ(m/d)baba

=
∑

b∈(Z/d)∗

∑
a∈(Z/d)∗

g(m/d)aζ
(m/d)bab =

∑
b∈(Z/d)∗

∑
j∈(m/d)(Z/d)∗

gjζ
bjb;

i.e., the entry (Od)b in the vector Od is
∑

j∈(m/d)(Z/d)∗ gjζ
bj .

Now g(ζb) =
∑

j gjζ
bj =

∑
d

∑
j∈(m/d)(Z/d)∗ gjζ

bj =
∑

d(Od)b where d runs
through positive divisors of m. The desired vector b 7→ g(ζb) is thus the sum of Od

across d. Care is required in the details of this vector addition, for two reasons:
• Od is represented as a compressed vector, indexed by elements of (Z/d)∗.

One thus needs to synchronize indices for additions.
• There can be many divisors d of m, and adding each Od directly into Om

would incur #(Z/m)∗ additions for each d. To more efficiently handle all
Od, work upwards through d < m, adding each Od into Odp for the smallest
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prime p dividing m/d and then forgetting about Od. Each d then incurs
#(Z/dp)∗ ≤ dp additions, and the sum of dp across divisors d of m is
bounded by m(logm)1+o(1).

These additions require computing Od in the first place for each positive integer
d of m, i.e., multiplying Id by Zd in R[(Z/d)∗]; this is a multicyclic convolution as in
Sections 4.12.1 and 4.12.2. For example, if m is prime then these are multiplications
in R[(Z/m)∗] and R[(Z/1)∗], which are cyclic convolutions of lengths m− 1 and 1
respectively; this special case matches Rader’s original FFT.

If n = #(Z/m)∗ is smooth, meaning all prime factors in (logn)o(1), then
#(Z/d)∗, a divisor of n, also has all prime factors in (logn)o(1). The convolution
algorithm of Section 4.12.1 thus uses O((logn)o(1)#(Z/d)∗ log #(Z/d)∗) operations
in R, hence O((logn)1+o(1)#(Z/d)∗) operations in R. The total cost, the sum of
costs over d, is O(m(logn)1+o(1)) since

∑
d #(Z/d)∗ = m, hence O(n(logn)1+o(1))

as in Section 4.11, hence n(logn)1+o(1) since the cost for d = m is at least Θ(n logn).
When m is a power of an odd prime, this generalization of Rader’s FFT matches

the primitive part of a DFT algorithm by Winograd [96, Section 4]. For m = 2e,
Winograd uses a conventional size-2e additive FFT to directly solve the original
DFT problem, rather than using convolutions to compute primitive DFTs for the
multiplicative group (Z/m)∗. For general m, Winograd first decomposes a size-m
DFT into prime-power DFTs, and then reduces each odd-prime-power DFT to
its primitive part. The advantage of working directly with the primitive part of a
size-m DFT is that it allows more choices of subgroups, not requiring the subgroups
to align with the prime-power decomposition of m.

4.12.4. Inversion. Looking only at the primitive part of a DFT—evaluating g(ζb)
only for b ∈ (Z/m)∗, rather than for all b ∈ Z/m—raises the question of how to
recover g from these values. One cannot hope to recover m coefficients of g from
only #(Z/m)∗ values for m > 1, but if one restricts the allowed g indices as in
Section 4.10 then there is no obvious obstacle to recovering g.

Recall the principle that a full DFT with exponents negated is an inverse
full DFT. This implies the same principle for a primitive DFT. Given v ∈
RG, define hj =

∑
a∈G vaζ

−aj for each j ∈ Z/m; then
∑

j∈Z/m hjζ
bj =∑

a∈G va

∑
j∈Z/m ζ(b−a)j = mvb for b ∈ G. Hence the polynomial (

∑
j hjx

j)/m
has values vb as desired; note that m is invertible in R since there is a primitive
mth root of 1. Among the preimages of v under the map R[x]/(xm − 1) → RG,
this polynomial is characterized by having value 0 at ζb if b /∈ G.

The inverse primitive DFT has a different shape from the forward primitive DFT:
it computes m values from #(Z/m)∗ values, rather than the other way around. The
inverse can again be reduced to a convolution in the group ring R[(Z/d)∗] for each
positive integer d dividing m: the element Hd =

∑
b∈(Z/d)∗ h(m/d)bb of the group

ring is the product of Zd =
∑

b∈(Z/d)∗ ζ(m/d)bb and Vd =
∑

a∈G v−1/a(a mod d),
where a mod d means the image of a in (Z/d)∗.

To efficiently compute Vd for all d, work downwards through d (reversing how Od

was handled in the forward transform), obtaining Vd for each d < m via Vdp for the
smallest prime p dividing m/d. The sum of dp is again bounded by m(logm)1+o(1).
This procedure computes all hj at similar speed to the forward transform.

The following paragraphs explain how to tweak the above procedure to produce
an output polynomial where all exponents j are guaranteed to have gcd{m, j}
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dividing m/radm; here radm means the radical of m, the product of prime divisors
p of m. One can then skip any d not divisible by radm, rather than subsequently
eliminating exponents for those d as in Section 4.10. For example, when m is prime,
the tweaked inversion procedure uses a convolution only for (Z/m)∗ (skipping a
convolution for (Z/1)∗), and produces exponents 1, . . . ,m− 1 (skipping 0), exactly
as in Section 4.8.4.

Consider any positive integer r dividing radm. Abbreviate gcd{m, r∞} as mr,
and choose sr ∈ mrZ ∩ (1 + (m/mr)Z). These quantities sr have three critical
properties:

• If r = 1 then sr ∈ 1 +mZ.
• If r > 1 then gcd{m, sr} > 1.
• If a prime divisor p of m does not divide r then the difference sr − srp is

in (m/pordp m)Z. (Both sr and srp are in mrZ and in 1 + (m/mrp)Z, so
sr − srp is in mrZ and in (m/mrp)Z; mr is coprime to m/mrp, so sr − srp

is in (mmr/mrp)Z; and mrp/mr = pordp m.)
Define h′

j,r =
∑

a∈G vaζ
−ajsr . Then h′

j,1 =
∑

a∈G vaζ
−aj = hj since s1 ∈ 1+mZ,

so
∑

j∈Z/m h′
j,1ζ

bj = mvb for b ∈ G. If r > 1 then
∑

j∈Z/m h′
j,rζ

bj = 0 for b ∈ G

since gcd{m, sr} > 1.
Define h′

j =
∑

r µ(r)h′
j,r where µ is the Möbius function. (For example, h′

j =
h′

j,1 −h′
j,p −h′

j,q +h′
j,pq if radm is the product of primes p, q.) Then

∑
j∈Z/m h′

jζ
bj =

mvb for b ∈ G.
The polynomial (

∑
j h

′
jx

j)/m, like the previous polynomial (
∑

j hjx
j)/m, thus

has the desired values vb. This polynomial also has the extra feature described
above: h′

j can be nonzero only if gcd{m, j} divides m/radm. (Indeed, consider any
j for which gcd{m, j} does not divide m/radm, i.e., for which ordp j ≥ ordp m for
some prime p dividing m. If p does not divide r then sr − srp ∈ (m/pordp m)Z, so
jsr − jsrp ∈ mZ, so ζ−ajsr = ζ−ajsrp for each a ∈ G, so h′

j,r = h′
j,rp; hence h′

j = 0.)
Fast computation of this polynomial works the same way as fast computation

of the previous polynomial: the desired H ′
d =

∑
b∈(Z/d)∗ h′

(m/d)bb is the product
of Z ′

d and Vd in the group ring R[(Z/d)∗], after a precomputation of Z ′
d =∑

r µ(r)
∑

b∈(Z/d)∗ ζsr(m/d)bb. If d is not divisible by radm then Z ′
d = 0; again,

the point of this tweak is to skip such values of d.

4.12.5. Folding: the symmetric case. Now let H be a subgroup of G, and
write K for the subfield of Q(ζm) fixed by {σc : c ∈ H}. The objective here is to
save a factor essentially #H for arithmetic on elements of this subfield. The special
case of prime m was handled by the folded Rader FFT from Section 4.8.

As a starting point, if K has conductor smaller than m, then one can replace m
with the conductor, and replace H with the corresponding subgroup for the new
conductor. For each change of conductor, one also needs to correspondingly change
the input representation; Section 4.10 explained how to do this for full cyclotomic
fields, and this conversion is compatible with the symmetries described below. So
assume from now on that K has conductor m.

Define H0 = H ∩ (1 + (radm)(Z/m)). Section 4.12.7 explains how to handle the
possibility that #H0 > 1. Assume for now that #H0 = 1. For example, if m is
squarefree, then radm = m, so #H0 = 1.

By [29, Lemma 3(1) and Corollary 2], Q(ζm) has an integral basis set B ⊆ ζZm
such that the usual action of H on ζZm restricts to a free action of H on B. This
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implies, as noted in [29, page 281, top paragraph], that {trQ(ζm)
K β : β ∈ B} is an

integral basis set for K.
These traces trQ(ζm)

K β for β ∈ B generalize the Gauss periods from Section 4.7.
It seems reasonable to refer to these generalized basis elements as Gauss periods:
the periodicity is immediately visible in the coefficients of each trace, thanks to H
acting freely on B.

Now represent elements of K as linear combinations of these Gauss periods,
generalizing the case of prime m. So far this matches what is proposed in [29,
Section 5]. What is not addressed in [29] is how to multiply quickly.

Each input to multiplication is a polynomial g = g0 + g1x + · · · + gm−1x
m−1

in Z[x]/(xm − 1) representing g(ζm). This polynomial is not represented on the
length-m basis 1, x, . . . , xm−1, but rather on a basis of length just #(Z/m)∗/#H
representing the Gauss periods: the basis set is

{∑
c∈H xbc : b ∈ Z/m, ζb

m ∈ B
}

. In
other words, gj = gjc for all j ∈ Z/m and all c ∈ H, and gj = 0 when ζj

m is outside
B.

Move as usual from Z to a quotient ring R containing the primitive roots of 1
needed for all FFTs that appear. Each input to multiplication is then a polynomial
in R[x]/(xm−1), again represented on the basis set

{∑
c∈H xbc : b ∈ Z/m, ζb

m ∈ B
}

.
The critical point here is that the H symmetry in the x exponents passes directly

through every step in the generalization of Rader’s algorithm from Section 4.12.3,
producing a generalized folded Rader FFT. For each positive divisor d of m, the
input group-ring element Id =

∑
a∈(Z/d)∗ g(m/d)aa

−1 has entries invariant under the
action of H on (m/d)(Z/d)∗, so one replaces (Z/d)∗ with the corresponding quotient
group, precomputing a folded version of Zd in that group. Similar comments apply
to the inverse transform from Section 4.12.4.

4.12.6. Folding: cost analysis of the symmetric case. Note that sometimes
B ∩ ζ

(m/d)(Z/d)∗

m = {} so d can simply be skipped in the forward transform. For
example, for a prime power m = pe, the basis B in Section 4.10 skips some arc of
1/p of the circle; if the arc is chosen to contain 1 then d = 1 can be skipped.

For the case m = p, this leaves just d = p, which is why the folded Rader FFT
in Section 4.8 works exclusively with (Z/p)∗. On the other hand, skipping the arc
is somewhat deceptive when one tries to generalize; if e > 1 then one encounters
powers of ζpe having different orders. From this perspective, for the case m = p
there is expository value in considering the entire circle—as in Rader’s original
algorithm, which allows g0 6= 0, doing extra work for a Rader of the lost arc.

For general m, the construction of B in [29, Section 3] avoids any exponent
divisible by pordp m for any prime divisor p of m; the construction reviewed in
Section 4.10 also works this way if one chooses the sets Ip,e in that section to
contain 0. This ensures that the divisors d of m that appear are all divisible by
radm. The tweaked inverse transform in Section 4.12.4 makes the same guarantee.

If the starting conductor-m field K is a proper subfield of Q(ζm) then requiring
the degree n of K to be smooth does not necessarily mean that the degree
#(Z/m)∗ of Q(ζm) is smooth. Fortunately, what appears in convolution is not the
group (Z/m)∗, but the quotient group (Z/m)∗/H, which has cardinality n, and,
more generally, quotients ((m/d)(Z/d)∗)/H having cardinality dividing n, so each
cardinality is smooth, giving fast convolution by the algorithm of Section 4.12.1.
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One also has to check that the total size of the groups ((m/d)(Z/d)∗)/H that
appear is n(logn)o(1). The point here is that the action of H on (m/d)(Z/d)∗ is free
for d = radm (since by assumption #H0 = 1 where H0 = H∩(1+(radm)(Z/m))),
and thus for each positive divisor d of m divisible by radm. Each element of the
quotient ((m/d)(Z/d)∗)/H thus corresponds to #H elements of (m/d)(Z/d)∗, and
the sets (m/d)(Z/d)∗ are disjoint subsets of Z/m as d varies, so the total size of the
groups is at most bm/#Hc. One has m/#(Z/m)∗ ∈ (logn)o(1) as in Section 4.11,
and #(Z/m)∗/#H = n.

Moving down through a tower of subfields with conductor m corresponds to
moving up through a tower of subgroups H of (Z/m)∗. If B is chosen so that the
largest subgroup H in the tower acts freely on B then the smaller subgroups in the
tower will also act freely on B. Moving from the basis for a smaller field to the
basis for a larger field is then simply repeating coefficients, and moving the other
way (as in detK

Q evaluation) is removing redundant coefficients.

4.12.7. Folding: the almost-symmetric case. What happens if instead #H0 >
1? One then has #H0 = 2 by [29, Lemma 3(2)], with H factoring as a direct
product of H0 and another group H1, and [29, Lemma 4] constructs a basis of
K that is almost as symmetric as the Gauss periods. Part of the basis consists of
traces of the form trQ(ζm)

K ζb; the other part consists of traces of the form trQ(ζm)
K1

ζb =
(1/2) trQ(ζm)

K ζb, where K1 is the fixed field of H1 and b is chosen to have trQ(ζm)
K1

ζb ∈
K. All of this relies on K having conductor m.

The easy approach to fast multiplication here is to represent the elements of K
as elements of the superfield K1, using only the H1 symmetry. This reduces to
the symmetric case handled above. This loses a factor 2 compared to the desired
H symmetry, but this loss is not visible at the level of detail of this section’s cost
analyses; Θ(#H1) is the same as Θ(#H).

This approach should not be confused with representing the elements of K as
elements of Q(ζm), losing the variable factor contemplated in Section 4.4. These
representations coincide only when K1 = Q(ζm), i.e., when K has half the degree
of Q(ζm), i.e., when #H1 = 1.

It is instructive to look at the case #H1 = 1 more closely. The archetypal
examples are the following two half-degree subfields of a power-of-2 cyclotomic
field Q(ζm) where m ≥ 8:

• The subfield fixed by σ−1, i.e., the real-cyclotomic field R ∩ Q(ζm).
• The subfield fixed by σm/2−1.

Both of these have conductor m, unlike the half-degree cyclotomic subfield Q(ζm/2),
which is the subfield fixed by σm/2+1.

In the power-of-2 real-cyclotomic case, the almost-symmetric basis in [29,
Lemma 4] consists of the H-traces ζm+ζ−1

m , . . . , ζ
m/4−1
m +ζ−m/4+1

m and one H1-trace
ζ

m/2
m = −1. Because the H1 part of the basis is so short, one can productively

use H-folded DFTs to multiply the H-symmetric part of the first input by the
H-symmetric part of the second input, and then use schoolbook multiplication to
handle the missing products.

4.13. Open questions. Multiquadratic fields K = Q(
√
d1,

√
d2, . . . ,

√
dt) are

Abelian. One can apply the machinery from Section 4.12 to this case, starting
by writing

√
d1, . . . ,

√
dt in terms of Gauss periods. However, the multiplication
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algorithm in [9, Section 3.3] is considerably simpler, mapping Z to quotient rings
Fp for which Fp[x1, . . . , xt]/(x2

1 − d1, . . . , x
2
t − dt) splits into 2t copies of Fp. Can

one efficiently handle arbitrary towers by the same technique?
(Note that [59] studied tower performance but did not specifically consider the

base ring Z, and in particular did not consider switching from Z to Fp for a suitably
selected p. It would also be interesting to investigate a switch to R or C, but using
Fp has the virtue of avoiding precision questions.)

One might think that the answer is “Yes, of course”. Start with R0 = Z and
K0 = Q. For j ∈ {1, 2, . . . , t}, select a monic irreducible polynomial ϕj ∈ Rj−1[xj ],
define Rj = Rj−1[xj ]/ϕj , and define Kj = Kj−1[xj ]/ϕj . There are infinitely many
primes p for which

• ϕ1 splits into linear factors in Fp[x1];
• ϕ2, with each of the roots of ϕ1 in Fp substituted for x1, splits into linear

factors in Fp[x2];
• etc.;

and then Fp[x1, . . . , xt]/(ϕ1, . . . , ϕt) is isomorphic to Fn
p , where n =

∏
j degϕj .

To compute detK
Q α for a small element α of the ring of integers O of K = Kt,

multiply α by a denominator D known to have DO ⊆ Rt, and then divide Dn out
of detK

Q Dα.
One obvious question is how large the denominator D is. For multiquadratics

with coprime squarefree d1, . . . , dt, denominator n = 2t suffices; what about other
fields? But this question doesn’t seem to matter much for performance, even though
D appears to an nth power in detK

Q Dα: in deciding how large
∏

p p needs to be,
one can disregard the known divisor Dn of detK

Q Dα and consider only the size of
detK

Q α. This is the non-Archimedean version of a suggestion from Belabas [10,
Section 5.2] mentioned in Section 3.3, namely using known divisors to limit the
precision of complex embeddings.

A more worrisome question is how large p is. The standard proof that there
are infinitely many suitable primes p runs via Chebotarev’s density theorem. This
theorem includes the statement that the primes splitting completely in K have
density 1/#G, where G is the Galois group of K. (An older density theorem due
to Frobenius suffices here; see generally [89].) Since the density is nonzero, there
are infinitely many such primes. One might have to skip primes that divide D, but
there are only finitely many such primes. The density provides enough information
to formulate reasonable conjectures regarding the size of p.

The reason this question is worrisome is that Galois groups are generally huge.
For example, if n is prime then one expects degree-n fields to have #G = n!, and
then one expects p to have Θ(n logn) bits—which (1) raises the question of how to
find such a p and (2) forces cost n2+o(1) for n-coefficient multiplications. Requiring
a smooth tower should bias #G downwards, but how much?

One might guess that usually #G = 2n−1 for a degree-n field having a power-of-2
tower. As a data point, Figure 4.13.1 builds a random-looking tower of fields of
degrees 2, 4, 8, 16 and prints out the first 3 primes that split completely in each field.
These primes are 11, 13, 23 for degree 2; 61, 157, 181 for degree 4; 181, 647, 1907 for
degree 8; and 1331339, 1384861, 1570633 for degree 16. For comparison, 97, 193, 257
split completely in Q(ζ32), a cyclotomic field of degree 16.
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K.<a> = NumberField(x^2-3)
Kpoly.<y> = K[]
L.<b> = K.extension(y^2-(a+4))
Lpoly.<z> = L[]
M.<c> = L.extension(z^2-(a*b+5*b+9*a+2))
Mpoly.<t> = M[]
N.<d> = M.extension(t^2-(6*a*b*c+5*b*c+3*a*c+5*c+8*a*b+9*b+7*a+9))
for F in K,L,M,N:
  num = 0
  for p in primes(2,oo):
    if len(F.primes_above(p)) == F.absolute_degree():
      print(F.absolute_degree(),p)
      num += 1
      if num >= 3: break

Figure 4.13.1. Sage script to build a random-looking tower of
fields of degrees 2, 4, 8, 16 and find the first 3 completely split
primes in each field.

For the case of K being Galois (whether or not Abelian), one has #G = n, so
completely split primes p appear with density 1/n. If the goal is to find n1+o(1)

such primes, enough primes to have Θ(n logn) bits in the product, then one can
reasonably conjecture that the maximum prime has only (2 + o(1)) log2 n bits. For
weaker bounds assuming GRH, see, e.g., [54, Section 2].

More needs to be done even in the Galois case: fast multiplication in each subfield
requires a tower representation that keeps coefficient sizes under control, avoiding
the blowups illustrated in Section 4.3. For the Abelian case, generalizing Gauss
periods as in [29] provides explicit small-coefficient integral bases for each field,
and generalizing Rader’s FFT as in this paper provides fast multiplication directly
on these bases. Are there explicit subfield-compatible integral bases supporting fast
multiplication for Galois number fields beyond Abelian fields?

Another open question is whether one can do better than n2+o(1) for a degree-n
Abelian field when n is prime. Perhaps one can achieve n1.5+o(1), analogously to
how group structure is used to save an n0.5+o(1) factor in [79], [90], [28], and, in
the elliptic case, [20].

5. Enumerating small S-units

The primary motivation for this paper comes from the role of detK
Q α computation

inside one of the fundamental tools in computational algebraic number theory:
namely, passing all small elements α ∈ O, where O is the ring of integers of K,
through a filter that outputs the S-units α.

This section reviews parameter choices for this tool, applications of this tool,
and the conjectured performance of standard algorithms that work for arbitrary
number fields K. This section then analyzes the impact of speedups for the case of
smooth-degree cyclotomic fields K = Q(ζm).

5.1. Parameter choices. Beyond the choice of number field K, there is a choice
of the set S. Typically an application specifies K, whereas S is something for the
algorithm designer to optimize.
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The traditional objective in choosing S is to minimize the time required to find
filtered S-units that generate the S-unit group, i.e., the time required for a search
of all small elements of O to identify small S-units in O that generate the S-unit
group. For each S, the group generated by the filtered S-units is the full S-unit
group once the search space is large enough, i.e., once the bound on “small” elements
of O is large enough; but this raises a quantitative question of how large.

For simplicity, let’s take S specifically as ∞ ∪ {P : #(O/P ) ≤ y}, where ∞ is
the set of infinite places, P runs through nonzero prime ideals of O, and y is a
parameter to be optimized. For algorithms to compute S, see, e.g., [34, Sections
4.8.2 and 6.2].

A nonzero element α ∈ O is an S-unit if and only if the ideal αO has the form∏
P :#(O/P )≤y P

e(P ) for some function e : {P : #(O/P ) ≤ y} → N. The S-unit
group is the set of nonzero elements α ∈ K such that the fractional ideal αO has
the form

∏
P :#(O/P )≤y P

e(P ) for some function e : {P : #(O/P ) ≤ y} → Z.
For example, in the case K = Q, a nonzero rational number is an S-unit if

and only if it is y-smooth, i.e., has the form ±
∏

p≤y p
e(p). There is an extensive

literature on the distribution of y-smooth integers; for surveys see, e.g., [75], [73],
and [53]. If integers are chosen independently and uniformly at random from the
interval [1,H] then (log y)2 is conventionally chosen as (1/2+o(1))(logH) log logH,
giving chance 1/y1+o(1) of y-smoothness and giving total time

y2+o(1) = exp((
√

2 + o(1))(logH)1/2(log logH)1/2)

to find y1+o(1) integers that are y-smooth. See, e.g., [31, Theorem 10.1].
For general number fields, much less has been proven. It is still conventional

to choose (log y)2 ∈ (1/2 + o(1))(logH) log logH, where now H is an estimate for
the typical size of detK

Q α. Various applications are then conjectured to find y1+o(1)

S-units in total time y2+o(1). See [31, Section 10] for a review of several such
conjectures. These conjectures start from the heuristic that, in the words of [31,
Section 10], “the auxiliary numbers that ‘would be smooth’ are just as likely to be
smooth as random integers of the same approximate magnitude”.

The reason for asking for y1+o(1) S-units is that the rank of the S-unit group
is #S − 1, which, for reasonably large y, consists mainly of the number of finite
places P in S. By Landau’s prime-ideal theorem [65, Section 5], the number of P
with #(O/P ) ≤ y is (1 + o(1))y/log y.

Some caution is required here. First, Landau’s theorem is a statement as y → ∞
for a fixed K, not a statement regarding the conventional choice of y as K varies.
Furthermore, finding y1+o(1) S-units is not a guarantee of generating the full S-unit
group. For the number field Q(

√
2,

√
3,

√
5,

√
1000003), a small search with some

notions of smallness will find only elements of Q(
√

2,
√

3,
√

5); Cohen gives a warning
in [34, page 354, item (3), last sentence] about small S-units not being “random”.

On the other hand, experiments suggest that, for “balanced” number fields such
as Q(ζm), small filtered S-units avoid such conspiracies. See, e.g., Miller’s S-unit
computation [70] proving under GRH that R ∩ Q(ζ512) has class number 1.

The circular approximation in Section 2 says that weight-w elements of degree-n
power-of-2 cyclotomics have logH ≈ n(logw − γ)/2. The conventional choice of y
then has (log y)2 ∈ n1+o(1) under the mild assumption w ∈ nO(1). To understand
more precisely how large w should be, start from the standard conjectures
mentioned above, which say that one needs to search exp(n1/2+o(1)) ring elements
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to find enough S-units; and then match this to the number of weight-w elements to
see that w ∈ n1/2+o(1). Generating all small ring elements means also using smaller
values of w, but almost all of the filtered S-units will be found with w ∈ n1/2+o(1),
and almost all of the computation time is spent with w ∈ n1/2+o(1). See also [1] for
experiments with prime cyclotomics.

5.2. Applications. Filtering small ring elements to find small S-units has a long
history. The traditional application is to find fundamental invariants of O, such
as the class group Cl O and the unit group O∗. If the filtered S-units generate
the S-unit group then linear algebra on the exponent vectors of the factorizations
of S-units (the vectors e above) reveals the unit group (S-units with trivial
factorization, i.e., with e = 0) and, if S is large enough, the class group (all integer
vectors modulo the subgroup of “class-group relations”, i.e., the subgroup of S-unit
exponent vectors).

For details of this application, see, e.g., Cohen’s description in [34, Section 6.5].
Cohen starts with a more general search that filters small elements of any ideal I
to find S-generators of I, and applies this to ideals I obtained as random products
of small prime ideals, but also, in [34, page 354, item (3)], mentions taking I = O
as an “important speedup”. For simplicity this section focuses on filtering small
elements of O to find S-units, but the speedups described below generalize easily
to filtering small elements of any I to find S-generators of I.

Starting a few decades ago (see [67]), filtering ring elements to find S-units took
on new importance as a critical subroutine inside NFS, the number-field sieve for
integer factorization. The number-field sieve is conjectured to factor any positive
integer N into primes in time at most exp((logN)1/3+o(1)); in this context logH ∈
(logN)2/3+o(1).

A much newer application is “filtered-S-unit attacks” against a problem that
has arisen in cryptography, namely finding very short elements of a “worst-case”
ideal I, not just the moderately short elements that one finds with, e.g., LLL. See
generally [17], [23], and [1]. The simplest S-unit attacks start with an S-generator
g of I with g ∈ I, and search for shorter S-generators gu/v ∈ I where u and v
come from a database of S-units. Filtered-S-unit attacks build the database by
filtering small elements of O, and are conjectured in [17, page 47] to find very short
elements (to be precise, “Hermite factor” at most n1/2+o(1); this is overkill for the
cryptographic applications) in subexponential time.

Class-group computations, unit-group computations, and NFS carry out linear
algebra on the S-unit exponent vectors. The conventional choice of y mentioned
above tries to minimize the cost of finding S-units in the first place, without regard
to the cost of linear algebra. If linear algebra turns out to be the main bottleneck
then algorithm designers can and do improve overall algorithm performance by
reducing y; see, e.g., [81, page 115, bottom paragraph]. The cost of finding S-units
is then easily visible in the overall algorithm run time.

5.3. The standard filtering procedure. It is straightforward to enumerate all
small elements of O for various reasonable notions of “small”. For example, in
Section 2, one can try all w up to some bound; for each w, enumerate possibilities
for a partition of w as a sum of n squares in nonincreasing order; and, for each
possibility, enumerate ways to assign the (positive and negative) square roots to
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α0, α1, . . . , αn−1. This rapidly generates small elements α ∈ O. The big problem is
to figure out which of these elements α are S-units.

The standard procedure (see, e.g., [34, page 491, step (6)]) computes N =
|detK

Q α| and throws α away if N is not y-smooth. The point here is that if αO =∏
P :#(O/P )≤y P

e(P ) then N =
∏

P :#(O/P )≤y #(O/P )e(P ); each #(O/P ) is a prime
power bounded by y, so N is y-smooth.

As mentioned above, standard conjectures say that α is an S-unit with
probability 1/y1+o(1) for the conventional choice of y, and that N is y-smooth
with probability 1/y1+o(1) for the conventional choice of y. This does not mean
that these events are identical: if N is y-smooth then the standard procedure still
has to check whether α is in fact an S-unit.

Specifically, if N is y-smooth, then, for each prime p dividing N , the standard
procedure runs through each P above p (each nonzero prime ideal P of O with
p ∈ P ) having #(O/P ) ≤ y, computes ordP α as in [34, Section 4.8.3], and checks
whether this accounts for the power of p in N . (The check is simpler if K is Galois:
each P above p then has the same #(O/P ), so α is an S-unit if and only if, for each
prime p dividing N , some P above p has #(O/P ) ≤ y.) Because N is y-smooth
with probability only 1/yΘ(1), this is not a bottleneck asymptotically; as Cohen
puts it in [34, page 491], “this will be done quite rarely and does not really increase
the running time”.

5.4. Exploiting automorphisms. If α is an S-unit and σ is an automorphism of
K then σ(α) is also an S-unit. Rather than searching all small elements of O, one
can search orbits of small elements under the automorphism group of K. Typically
“small” is defined in a way that is invariant under automorphisms: for example, in
Section 2, σ(α) has weight w if and only if α has weight w.

In particular, if K is Galois, then the automorphism group coincides with the
Galois group and has cardinality n = degK. There are two reasons that this does
not imply a speedup factor n; on the other hand, for typical examples, the speedup
factor does end up as Θ(n).

The first reason is that, for n > 1, some elements of K are in proper subfields
and thus have smaller orbits. For example, in Section 2, α =

∑
0≤j<n αjζ

j
m is in a

proper subfield of K if and only if αj = 0 for all odd j. However, this is increasingly
rare as w grows.

The second reason is that one has to account for the cost of enumerating orbits.
The naive approach is to enumerate all small ring elements and then, for each
element, try applying automorphisms to see whether the element is an orbit leader
(say, first in its orbit in lexicographic order as a vector on a specified basis). One
expects to try only Θ(logn) automorphisms on average for recognizing that an
element isn’t an orbit leader. This might sound fast enough for fields where applying
an automorphism costs only n1/2+o(1) in sparse representation—but one wants small
costs per orbit, not just small costs per element. Simply writing down an element
in sparse form usually costs n1/2+o(1), so writing down all n elements in a size-n
orbit usually costs n3/2+o(1). Evaluating detK

Q α for the orbit leader α costs more
than this in Section 3 but less than this in Section 4.

In various concrete examples of interest, one can easily modify the generation
of small ring elements to more efficiently generate orbit leaders. For example, for
power-of-2 cyclotomics, an element α =

∑
0≤j<n αjζ

j
m outside all proper subfields

can always be conjugated to have α1 6= 0, so one can handle the degree-n/2 subfield
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recursively and then limit the generation procedure to force α1 6= 0. This reduces
the orbit-enumeration cost by a factor n1/2+o(1) for w ∈ n1/2+o(1): each element
has at most w nonzero positions, and position j is moved to position 1 by at
most two automorphisms. One can impose further restrictions to further reduce
the orbit-enumeration cost; see, e.g., how the cycloshort module in [1] generates
orbit leaders in the case of prime m, for orbits not just under automorphisms but
also under multiplications by ζm.

5.5. Exploiting subfields. Take again a weight-w integral element α in a
degree-n power-of-2 cyclotomic field K, and assume w ∈ n1/2+o(1). The circular
approximation in Section 2 says that detK

Q α almost always has Θ(n logn) bits.
Section 1 already explained how to compute detK

Q α in time n(logn)3+o(1) in this
case using a tower of cyclotomic subfields, and Section 4 explained how to reach
this cost for any Abelian field whose degree is (logn)o(1)-smooth, whereas the
best non-subfield methods from Section 3 take time n2(logn)2+o(1). Combining
this n/(logn)1+o(1) speedup with the Θ(n) automorphism speedup gives an overall
n2/(logn)1+o(1) speedup in the sequence of detK

Q α computations.
Note that this is a speedup from one type of algorithm to another, with

both types applied to power-of-2 cyclotomics: namely, a speedup from (1)
general-purpose algorithms to (2) algorithms exploiting automorphisms and
subfields. The subroutines used for the general-purpose algorithms to reach
n2(logn)2+o(1) include complex FFTs exploiting the structure of the roots of
xm − 1; see Section 3.3. For a field such as Q[x]/(xn − x − 1) without this
structure, the best techniques in Section 3 cost n2(logn)3+o(1) except when the
polynomial-remainder sequence is particularly short, so moving from such a field
to a power-of-2 cyclotomic of the same degree gives an n2(logn)o(1) speedup.
This speedup factor drops to n2/(logn)1+o(1) if there is some way to reach cost
n2(logn)2+o(1) for detQ[x]/(xn−x−1)

Q . In any case, given known techniques, it is clear
that one should check the field structure, and in particular should take advantage
of automorphisms and subfields.

5.6. Better alternatives for limited-dimension search spaces. NFS uses
number fields that, compared to cyclotomics with the same size of H and the same
size of y, have relatively low degree and relatively high discriminant. Quantitatively,
the NFS field degree is only (log y)1+o(1) rather than (log y)2+o(1). Furthermore,
small ring elements in NFS are tilted towards having a small number of coefficients.
Most of the NFS literature considers just two integer coefficients (α0, α1) of an
element α = α0 + α1θ of a selected number field Q(θ), with a search space of
y2+o(1) elements defined by a range of y1+o(1) choices of α0 and a range of y1+o(1)

choices of α1; see, e.g., [31, Algorithm 11.1, Step 3].
In this setting, one can fix α1 and view detK

Q α as a polynomial in the integer
α0. One can write down successive polynomial values using repeated differences
or using asymptotically faster multipoint-evaluation subroutines. NFS algorithm
statements usually avoid writing down these values in the first place: instead they
observe that the values of α0 for which detK

Q α is divisible by p consist of a small
number of arithmetic progressions modulo p, and simply mark those positions in
an array indexed by α0, assuming free access to RAM. See, e.g., [31, page 57].
This Eratosthenes-like sieving procedure accounts for the “sieve” part of the name
of NFS.
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To limit RAM usage, more advanced versions of NFS limit the size of p found
in this way; they then write down detK

Q α and switch over to “cofactorization” to
find larger p. This does not mean that detK

Q evaluation is a bottleneck: these
versions of NFS carry out cofactorization only on the occasions that the product of
small p found is above a specified cutoff. With this type of “early abort”, NFS is
not carrying out a full search for all small S-units; but the requirement of having
many small p, like the requirement of having small coefficients, is algebraically
compatible with finding the full S-unit group, and analytically is conjectured to
have similar smoothness probabilities. Such conjectures are again provable for Q;
see Pomerance’s early-abort analysis in [81, Section 4].

Sometimes the NFS literature considers two-dimensional lattices of integer pairs
(α0, α1) for which detK

Q α is divisible by p; see, e.g., [80]. One can also consider
NFS variants with three or more coefficients in α, but normally NFS takes fields
where the size of θj increases rapidly with j, so one would expect the optimal lattice
dimension to be small; the question of whether three coefficients are useful in NFS
appears in, e.g., [15, fourth slide, bottom two lines].

The literature on class-group computation often considers fields of low degree
with large coefficient ranges as in NFS, but it also considers fields of high degree
with small coefficient ranges such as cyclotomics. The literature on S-unit attacks
focuses on high-degree fields such as cyclotomics. As the lattice dimension increases
and the allowed coefficient size decreases, it seems to become more and more difficult
to quickly identify small ring elements in a lattice of ring elements divisible by p,
except when p is very small. Fast detK

Q evaluation plays an obvious role in these
applications when K has high degree.

5.7. Exploiting more cyclotomic structure. A useful step in computing
the structure of the cyclotomic field Q(ζm) is to compute the structure of the
real-cyclotomic field R ∩ Q(ζm), which has half the degree if m ≥ 3.

For the unit group of R ∩ Q(ζm), one can instantly write down generators of
a full-rank subgroup, the group of “cyclotomic units”. These generators are also
rapidly found by a search of small ring elements.

For example, the set of cyclotomic units is ζZm
∏

c∈{1,3,...,m−1}(1 + ζc
m + ζ−c

m )Z
in the power-of-2 case. The group of cyclotomic units is conjectured to be the full
unit group in this case. See [23, Appendix C] for a review of evidence for this
conjecture.

For general m, there is often a gap between the group of cyclotomic units and
the full unit group. To test whether the index is divisible by a given prime `, one
can use order-` characters to see whether there are products of powers of generators
of the known group that are `th powers of units outside the group; if so, one can
adjoin the `th roots and repeat. (This procedure is often called “`-saturation” in
the context of unit-group computation.) After checking all small primes `, one can
reasonably hope that the full unit group is known.

To confidently obtain the class group of R ∩ Q(ζm), the literature uses filtered
S-units, as in [70]. For any number field, confirming the class number also confirms
the full unit group by analytic techniques. For R∩Q(ζm) where m is a prime power,
these techniques boil down to Kummer’s theorem that the class number of R∩Q(ζm)
is the index of the cyclotomic units inside the full group of units. See, e.g., [94,
Theorem 8.2], and see [88] for a generalization to any m.
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Starting from the units of R∩Q(ζm), one obtains the units of Q(ζm) by adjoining
ζm and, for m not a prime power, 1−ζm; see [94, page 40]. There is also a standard
easy-to-compute formula for the class number of Q(ζm) in terms of the class number
of R∩Q(ζm); see [94, Theorem 4.17]. For p-units, meaning S-units where the finite
places in S are the prime ideals over p, one can efficiently move from the p-units of
R∩Q(ζm) to the p-units of Q(ζm) by adjoining Jacobi sums and then taking square
roots (2-saturation); see [17]. For further S-units of Q(ζm), filtering appears in
[17, page 47] and [1].

In short, cyclotomics make many computations easier, but filtering continues to
play an important role: filtering gives S-units of R ∩ Q(ζm), cyclotomic structure
then gives the p-units of Q(ζm), and further filtering gives further S-units of Q(ζm).

5.8. Comparison to the cost of smoothness detection. One might think
that checking the y-smoothness of N = detK

Q α is, at least asymptotically, much
more expensive than computing N in the first place. ECM is conjectured to use
exp((

√
2 + o(1))(log y)1/2(log log y)1/2) multiplications mod N ; early-abort ECM

from [22, Section 3] is conjectured to replace
√

2 with
√

8/9; either way, the cost
is exponential in n1/4+o(1) when log y ∈ n1/2+o(1).

However, one can merge smoothness tests of many integers N , even without the
visible structure from Section 5.6. Specifically, if Y is a finite set of primes and S is
a finite sequence of positive integers then the batch smoothness-detection algorithm
from [14] uses—assuming free RAM access—O(B(logB)2+o(1)) bit operations to
find all Y -smooth integers in S (integers that factor into the primes in Y ), where
B is the total number of bits in Y and S. A closer look shows that if one plugs in
the Harvey–van der Hoeven integer-multiplication algorithm [56] then the number
of bit operations is O(B(logB)2).

In particular, take Y = {p : p ≤ y}; then Y has Θ(y) bits. Assume that S has
Θ(y) integers, each having Θ(n logn) bits. Then B ∈ Θ(yn logn). The conventional
choice of y has log y ∈ Θ(n1/2 logn), so the cost O(B(logB)2) is O(yn2(logn)3),
i.e., O(n2(logn)3) per integer.

This analysis suggests that, with optimized subroutines for general number
fields, detK

Q evaluation and batch smoothness detection are balanced—up to a
constant factor, which could point in either direction—in the number of bit
operations. Saving a constant factor in detK

Q evaluation thus makes the entire
S-unit search faster by a constant factor. This does not require the work
in Section 4—the improvement in Section 3.3 from n2(logn)3 to n2(logn)2 for
cyclotomics is enough—but further speedups in detK

Q evaluation, as in Section 4,
make it easier to see speedups in batch smoothness detection.

Understanding the real-world impact of these speedups for concrete sizes requires
a much more detailed analysis and optimization of S-unit searches. As an example
of the issues that will arise, the real costs of RAM are a bigger problem for batch
smoothness detection than for detK

Q evaluation. On the other hand, rather than
taking Y = {p : p ≤ y}, one can take Y as the set of primes p where some P over
p has #(O/P ) ≤ y. This is particularly effective in the Galois case, reducing #Y
by a factor n + o(n), which also reduces RAM requirements by a factor n + o(n).
The same change of Y speeds up conventional trial division. Cyclotomics also
provide some speedup for Pollard’s ρ method (use the iteration polynomial xm + c)
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and Pollard’s p − 1 method (if p ∈ 1 + mZ then p − 1 is more likely to factor
appropriately), although much less speedup for ECM.

Finally, note that working with orbits under the Galois group as in Section 5.4
speeds up a sequence of smoothness tests by the same Θ(n) factor that it speeds up
a sequence of detK

Q evaluations: there are that many fewer N values to handle. It
is clear that known algorithms for S-unit searches are much faster for cyclotomics
than for unstructured number fields; the only question is how much.
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A. Software to check the Gauss-period algorithms

An open-source software package abelianfields is available from [18] for
various tests that the main algorithms described in this paper work as specified.
This appendix describes the software.

A.1. Software readability. The idea that a test of software S is also a test of
algorithm A relies implicitly on the idea that there is a match between S and A.
Helping readers check this match was a high priority in the development of the
abelianfields software package. This has three important consequences.

First, this software is written in a high-level language, specifically Sage. This has
the disadvantage of incurring Sage overhead for each step. This is a large slowdown
when one step is an arithmetic operation in a small finite field, as in Section 4.12.2.
The software does not attempt to show what can be done in reducing overhead per
ring operation. See Appendix C for further software illustrating ways to streamline
detK

Q evaluation in the case of power-of-2 cyclotomic fields K, using a lower-level
language.

Second, abelianfields uses straightforward subroutines for precomputations.
Here “precomputations” refers to algorithm steps that depend only on the number
field and the number of input bits, independently of the specific input at hand. The
paper’s performance evaluation assumes that the results of these precomputations
are cached, and that there are enough inputs that the cost of the precomputations
does not matter; consequently, various speedups in the precomputations, such as
known techniques to accelerate the search for prime fields with appropriate primitive
roots of 1, are simply ignored. The software makes a few exceptions for subroutines
that seemed likely to cause scaling problems for experiments and that were easy to
rewrite in faster ways.

Third, within the main computation, various standard speedups are suppressed
because they would compromise readability. For example, FFTs are not cached;
software prioritizing speed would include FFT caching, even though this does not
affect the n(logn)3+o(1) asymptotic. As another example, the software includes
not just tests of its main functions, but also many assertions inside the functions to
highlight assumptions and conclusions; eliminating assertions is a standard speedup.

A.2. Basic subroutines. The following low-level functions inside abelianfields
are used in various ways inside the convolution functions described in Appendix A.3,
the prime-conductor det functions described in Appendix A.4, and the
general-conductor det functions described in Appendix A.5:

• primitive.root_remember, given a ring R, a positive integer n, and a
primitive nth root of 1 in R, caches that root for future reference. The
caching does not currently move across pairs (R,n), for example to obtain
a primitive nth root by squaring a previously cached primitive 2nth root.

• primitive.root returns a primitive nth root of 1 in R, given R and n.
This function tries to find and cache a primitive nth root if one has not

https://www.ams.org/journals/mcom/1978-32-141/S0025-5718-1978-0468306-4/
https://www.ams.org/journals/mcom/1978-32-141/S0025-5718-1978-0468306-4/
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been previously specified by primitive.root_remember; this search is fast
when R is a prime field.

• units.generator, given m, returns a deterministically selected generator
of (Z/m)∗, if (Z/m)∗ is cyclic. Note that applying primitive.root to
inputs R = Z/m and n = #(Z/m)∗ often differs from this: for example,
(Z/4)∗ has a generator 3, but Z/4 does not have a primitive 2nd root of 1.

• tree.producttree and tree.remainders are product-tree/remainder-tree
subroutines. These are copied from [21], except for minor tweaks to upgrade
to Python 3.

• tree.interpolate is an analogous interpolation-tree subroutine. (Sage’s
built-in CRT function provides the same results as tree.interpolate aside
from details of how inputs are arranged, but uses an algorithm that scales
quadratically in most cases. This difference is outside this paper’s algorithm
analysis, since interpolation is used only in precomputation.)

• auxmodulus.prime, given B and n, returns the smallest prime number in
{B,B + 1, B + 2, . . .} ∩ (1 + nZ).

• auxmodulus.product, given B and n, returns an integer M ≥ B and a
sequence P of distinct prime numbers in 1 + nZ having product M . This
function also uses primitive.root_remember to remember a primitive nth
root of 1 in Z/M , obtained from interpolating (via tree.interpolate)
primitive nth roots of 1 in Z/p across p in P . Currently the prime numbers
in P are chosen as the smallest prime numbers in 1 + nZ, with the search
stopping once the number of bits in the prime numbers minus the number
of primes is at least the number of bits in B. More work would usually
bring M somewhat closer to B.

The general-conductor det functions also rely on various further manipulations of
subgroups and quotient groups of (Z/m)∗, which are abstracted by units as follows:

• units.group, given m, returns the group (Z/m)∗. This group supports
elements (see units.element below), iteration, and the following functions:

– cardinality returns #(Z/m)∗.
– modulus returns m.
– gens returns a vector of independent generators of (Z/m)∗. Calling

this function repeatedly always returns the same vector.
– ngens returns the number of generators returned by gens.
– gens_orders returns a vector showing the order of each generator

returned by gens.
– ring returns Z/m, represented as Sage’s Zmod(m).
– subgroup_1mod, given a positive divisor d of m, returns the kernel

(represented as a units.subgroup; see below) of the natural map from
(Z/m)∗ to (Z/d)∗. Internally, this uses a trivial enumeration of (Z/m)∗

for simplicity; one can do better for large m.
• units.element, given (Z/m)∗ (represented as a units.group) and an

element of Sage’s Zmod(m) or ZZ coprime to m (or, alternatively, an
exponent vector on units.group(m).gens()), returns an element of
(Z/m)∗, with support for all of Sage’s AbelianGroupElement features (e.g.,
multiplication and exponents) and the following extra functions:

– modulus returns m.
– inring returns the corresponding element of Zmod(m).
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– reduce, given a positive divisor d of m, returns the element of (Z/d)∗

obtained by feeding this element of (Z/m)∗ through the natural map
from (Z/m)∗ to (Z/d)∗.

• units.subgroup, given m and g1, g2, . . . ∈ (Z/m)∗, returns the subgroup
H of (Z/m)∗ generated by g1, g2, . . . . This subgroup supports elements (as
elements of (Z/m)∗), iteration, and the following functions:

– cardinality returns #H.
– modulus returns m.
– gens, ngens, and gens_orders are as above, but for independent

generators of H rather than independent generators of (Z/m)∗.
– fullgroup returns (Z/m)∗.
– quotient returns the quotient group (Z/m)∗/H, represented as a

units.quotient (see below).
– reduce, given a positive divisor d of m, returns the subgroup of

(Z/d)∗ obtained by feeding H through the natural map from (Z/m)∗

to (Z/d)∗.
– extend, given a vector of elements of (Z/m)∗, returns the subgroup

generated by H and those elements.
– intersect, given a subgroup H ′ of (Z/m)∗, returns H ∩H ′.
– is_subgroup_of, given a subgroup H ′ of (Z/m)∗, returns True if H

is a subgroup of H ′, else False.
– representatives_mod, given a subgroup H ′ of H (as a subgroup of

(Z/m)∗), returns representatives in (Z/m)∗ of the quotient H/H ′.
– conductor returns the conductor of H.
– is_radfree returns True if H is rad-free, meaning that H acts freely

on (Z/radm)∗.
– is_friendly returns True if H is friendly, meaning that (1) m is

divisible by 8 and all elements of H are 1 modulo 4 or (2) m is not
divisible by 8.

• units.quotient, given m and a subgroup H of (Z/m)∗, returns the
quotient group Q = (Z/m)∗/H. This quotient group supports elements (see
units.quotientelement below), iteration, and the following functions:

– cardinality returns #Q.
– modulus returns m.
– gens, ngens, gens_orders are as above, but for independent

generators of Q.
– fullgroup returns (Z/m)∗.
– denominator returns H.

• units.quotientelement, given Q = (Z/m)∗/H as above and an element
of (Z/m)∗ (or, alternatively, an exponent vector on Q.gens()), returns an
element of Q, with support for all of Sage’s AbelianGroupElement features
and the following functions:

– lift returns a preimage of this element under the natural map from
(Z/m)∗ to Q.

– reduce, given a positive divisor d of m, returns the element of
(Z/d)∗/H obtained by feeding this element of Q through the natural
map from (Z/m)∗/H to (Z/d)∗/H.
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Sage has a built-in Zmod(m).unit_group() that supports some of the above
features; abelianfields uses Zmod(m).unit_group() for some tests, and also
tests units.subgroup.conductor against PARI’s computation of conductors of
fixed fields of subgroups of the Galois group of Q(ζm).

A.3. Convolution functions. The convolution module inside abelianfields
handles the standard convolution techniques from Sections 4.12.1 and 4.12.2:

• convolution.multi_fft evaluates an isomorphism to Rn from the ring
S = R[x1, x2, . . . , xt]/(xd0

1 − xe0
0 , . . . , x

dt−1
t − x

et−1
t−1 ), given a ring R, a

primitive nth root ζ of 1 in R, a unit x0 in R, a list d of t positive integers
with product n, and a list e of t nonnegative integers where n divides e0
if t ≥ 1. This function also supports an optional reverse=True argument
that inverts the isomorphism.

• convolution.multi multiplies in the above ring S.
• convolution.multi_cyclic multiplies in S in the case e0 = e1 = · · · =
et−1 = 0.

• convolution.cyclic is the case t = 1, multiplying in R[x]/(xd − 1).
The convolution.multi_fft and convolution.multi functions leave it to the
caller to handle replacing di with p, di/p for speed when di is composite and p is a
prime divisor of di. The *cyclic* functions, which are the functions used elsewhere
in abelianfields, handle this replacement automatically.

By default, the *cyclic* functions require R to be Z or Z/M , and do not require
R to contain a primitive nth root of 1. These functions automatically decompose
large coefficients into elements of a small prime field Z/p, saving a logarithmic
factor as described in Section 4.12.2. Presumably handling this by segmentation,
as in Section 4.8.5, would be noticeably faster for small t, and in particular for
convolution.cyclic.

The *cyclic* functions also support a guaranteed_primitive=True option
that requires R to contain a primitive nth root of 1; in this case R is not required to
be Z or Z/M . Currently guaranteed_primitive=True also disables decomposing
large coefficients into elements of a small prime field.

A.4. Functions for prime-conductor fields. The prime module inside
abelianfields handles number fields of odd prime conductor p, along with Q.
Some of the functions in this module provide size-p FFT algorithms and, more
generally, folded Rader FFTs for positive divisors d of p− 1:

• prime.complete is a size-p DFT. This function is given a ring R, an odd
prime number p, a primitive pth root ζ of 1 in R, and the coefficients
g0, g1, . . . , gp−1 of a polynomial g = g0 + g1x + · · · + gp−1x

p−1 ∈ R[x];
this function returns g(1), g(ζp), . . . , g(ζp−1

p ). Internally, this function
implements Rader’s original FFT algorithm reviewed in Section 4.8.1. This
function is not used elsewhere; it is provided as a baseline algorithm for
comparison.

• prime.folded takes R, p, ζ, a positive integer d dividing p − 1, and
d coefficients g0, g1, . . . , gd−1 representing the d-periodic polynomial g =∑

j gj(xω−j + xωd−j + · · · + xωp−1−d−j ) where ω is units.generator(p).
This function returns g(ζω0), . . . , g(ζωd−1). Internally, this function uses
the folded Rader algorithm reviewed in Section 4.8.3, so it is simply a
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length-d cyclic convolution with a precomputed vector. The largest case,
d = p−1, is close to prime.complete, but prime.complete allows nonzero
constant coefficient, also evaluates at 1, and has a different order of inputs
and outputs.

• prime.folded_inverse inverts prime.folded for any particular
(R, p, ζ, d). See Section 4.8.4 for the algorithm.

All of these functions currently require R to be Z or some Z/M , and internally use
convolution.cyclic.

Further prime functions operate on elements of Zd, representing d-periodic
polynomials over Z, representing (integral) d-periodic elements of Q(ζp), meaning
elements of the degree-d subfield of Q(ζp). Note that, in particular, the element
(z, z, . . . , z) ∈ Zd represents the element −z of Q(ζp). Each function is given p and
d along with the further inputs described below:

• prime.multiply takes two elements of Zd representing d-periodic elements
α, β ∈ Q(ζp), and returns an element of Zd representing αβ. Internally,
prime.multiply computes an easy bound on the absolute coefficients of
αβ; uses auxmodulus.product to choose a modulus M above twice this
bound with a primitive pth root of 1 in Z/M ; and finishes with two length-d
folded DFTs over Z/M , d multiplications in Z/M , and one length-d inverse
folded DFT over Z/M . Each folded DFT boils down to one length-d cyclic
convolution with a precomputed sequence.

• prime.subfield takes a positive integer d2 dividing d, and an element of
Zd representing a d-periodic element α ∈ Q(ζp). It returns an element of
Zd2 representing α, if α is d2-periodic. In other words, it extracts the first
d2 entries of the input sequence, if the input sequence is d2-periodic.

• prime.conjugate takes an integer e, and an element of Zd representing
a d-periodic element α ∈ Q(ζp). It returns an element of Zd representing
σ(α), where σ is the unique automorphism of Q(ζp) mapping ζp to ζωe

p ,
where again ω is units.generator(p). In other words, prime.conjugate
rotates the input sequence to the left by e positions.

• prime.det_relative evaluates the determinant map from the degree-d
subfield of Q(ζp) down to the degree-d2 subfield of Q(ζp), where d2 is a
positive integer dividing d. This function takes d2 and an element of Zd

representing a d-periodic element α ∈ Q(ζp), and returns an element of
Zd2 . Internally, this function includes two implementations (tested against
each other): the default implementation saves time by pushing conjugation
and subfield extraction through the DFTs as explained in Section 4.8.6, but
there is also a simpler reference implementation, enabled by ref=True, that
multiplies conjugates by calling prime.conjugate and prime.multiply as
black boxes.

• prime.det_absolute evaluates the determinant map from the degree-d
subfield of Q(ζp) down to Q. Internally, this function automatically
factors d into primes and repeatedly applies prime.det_relative. One
could alternatively modify prime.det_relative to internally perform this
factorization; either way, the factorization is essential for the speed of this
paper’s algorithms.
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A.5. Functions for arbitrary-conductor fields. The general module inside
abelianfields has a similar structure to the prime module but supports arbitrary
conductor. Some of the functions provide the construction from [29, Section 5] of
an H-normal basis:

• general.normalbasis, given a rad-free subgroup H of (Z/m)∗, returns
B/H and a list of rewrite rules. Here B is an H-normal integral basis of
Q(ζm) consisting of roots of 1, and the rewrite rules specify how to rewrite
arbitrary roots of 1 in terms of B. Internally, the rewriting follows the
construction from [97] and [26] reviewed in Section 4.10.

• general.canonicalize expresses an H-periodic polynomial as an
H-periodic polynomial on the basis B from general.normalbasis,
rewriting any other exponents that appear. The input and output use
exponents in (Z/m)/H having additive order divisible by radm; the output
is guaranteed to be supported on B, which is automatic if m is squarefree
but not for general m.

• general.from_conventional also produces an H-periodic polynomial on
the basis B, but takes input in its conventional (not H-folded) form as a
list of m exponents, with no requirements on the additive order.

Some of the functions provide generalized Rader FFTs and generalized folded Rader
FFTs:

• As a warmup without folding, general.primitive is a primitive size-m
DFT. This function is given a ring R, a positive integer m, a primitive
mth root ζ of 1 in R, and the coefficients g0, g1, . . . , gm−1 of a polynomial
g = g0 + g1x+ · · · + gm−1x

m−1 ∈ R[x]. This function returns g(ζc) for each
c ∈ {0, 1, . . . ,m− 1} with gcd{c,m} = 1. Internally, this function uses the
generalized Rader FFT from Section 4.12.3.

• general.primitive_inverse is an inverse primitive size-m DFT.
Internally, this uses the inversion algorithm (and tweak) from
Section 4.12.4.

• general.folded is an H-folded DFT, as in Section 4.12.5. This function
is given R, m, ζ, a subgroup H of (Z/m)∗, and an H-periodic polynomial;
it evaluates the polynomial at ζc for each c in (Z/m)∗/H. The subgroup
H is required to be rad-free.

• general.folded_inverse is an inverse H-folded DFT.
Finally, as in prime, there are further functions to operate on H-periodic
polynomials over Z, representing elements of the subfield of Q(ζm) fixed by H.
Each function is given m and H along with the further inputs described below:

• general.multiply takes two H-periodic polynomials f, g and returns fg.
Internally, this uses H-folded DFTs.

• general.conjugate takes an element c ∈ (Z/m)∗ and an H-periodic
polynomial f , and returns σc(f), where σc is the unique automorphism
of Q(ζm) mapping ζm to ζc

m.
• general.subfield changes representation from the subfield K of Q(ζm)

fixed by H to the subfield F of Q(ζ`) fixed by a subgroup S of (Z/`)∗, where
F ⊆ K, assuming the input represents an element of F . This function takes
as input a subgroup H2 of (Z/m)∗ containing H; the function defines ` as
the conductor of H2, and S as the reduction of H2 to (Z/`)∗. This function
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also takes as input an H-periodic polynomial f , and produces as output
an S-periodic polynomial. The exact set of pairs (H,S) supported by this
function has a complicated description from details of how the function
steps through conductors and subgroups; both H and S are required to be
rad-free, and none of the default abelianfields tests include any cases
where this condition is insufficient.

• general.det_relative has the same input-output format as
general.subfield but evaluates detK

F rather than evaluating the
identity map on F . Internally, this function simply multiplies conjugates
using general.conjugate and general.multiply.

• general.det_absolute takes an H-periodic polynomial representing an
element α of the subfield K of Q(ζm) fixed by H, and returns detK

Q α. This
function requires H to be friendly.

A subroutine general.tower constructs the tower used in general.det_absolute.
Internally, general.tower starts with (Z/m)∗ and builds a chain of subgroups
down towards H. It tries to insert one prime at a time into the field degree so
as to obtain a maximum-length tower, but, for m ∈ 8Z, sometimes intersects the
current subgroup with 1+4Z to preserve the rad-free condition, in effect losing one
degree-2 step in the tower. There is no attempt in general.tower to search for
alternative chains.

A.6. Output of the tests. Running all internal abelianfields tests on Linux
systems with Sage installed is a simple matter of typing make in the package
directory. Various notes are printed regarding which test size is in progress, but not
regarding all the individual tests. Any failure is printed as a Sage assertion failure.

Along with correctness tests, the tests of the prime module include reporting, for
each small prime p, the sizes of convolutions used in computing determinants down
to Z of five random small elements of Z[ζp], specifically elements with

⌈
(p− 1)1/2⌉

coefficients ±1 and all remaining coefficients 0. For example, a typical computation
for p = 29 involved convolutions of lengths 28 (for a forward DFT) and 14 (for an
inverse DFT) over Z/M where M has 14 bits, convolutions of lengths 14 and 7 over
Z/M where M has 23 bits, and convolutions of lengths 7 and 1 over Z/M where
M has 83 bits, as reflected by the following output line:

p 29 totalbits 1735 Mbits,n: 14,28 14,14 23,14 23,7 83,7 83,1

The product of M bits and n adds up to 1735 in this example. Sizes can vary from
one element to another; see generally Section 2. To skip most tests and simply see
these convolution sizes, one can run make sagelibs and then, inside Sage, run the
following, although this still tests the results against Sage’s resultant subroutine:

import prime
prime.test_sizes(29)

The totalbits quantity is not monotonic in p: for example, the quantity is
typically 9090 or 9480 for p = 59 and typically just 3099 or 3177 or 3249 for
p = 61, reflecting the fact that Q(ζ61) has a much nicer tower than Q(ζ59) does.

Five experiments with p = 193 = 1 + 3 · 26 had totalbits being 16739, 17157,
17168, 17228, 16859; five experiments with p = 769 = 1+3·28 had totalbits being
83286, 83368, 82804, 82962, 82964. The 5× growth in totalbits from p = 193 to
p = 769 is, as expected, slightly larger than the 4× growth in p: the number of
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tower levels is growing logarithmically, and one expects another near-logarithmic
factor for reasons explained in Section 2.

(Similar comments apply to the general module, with larger sizes since
general does not push conjugation and folding through DFTs. For example, five
experiments from general.test_sizes(193) had totalbits being 36981, 36711,
38196, 36981, 35703, and five experiments from general.test_sizes(769) had
totalbits being 176103, 212355, 176922, 176103, 176067.)

Beyond totalbits, there is a third logarithmic factor in the run time of
this paper’s algorithm, reflecting the cost of convolution per bit. However, one
cannot expect to see this logarithmic factor in wall-time measurements for this
software. Operations in the small prime fields in Section 4.12.2 have inherent cost
growing with the size of the prime (which is also roughly logarithmic, with some
bumps for the distribution of primes), but in Sage the cost is instead dominated
by prime-independent overhead. Wall time was monitored experimentally as a
sanity check (with repeated runs so that precomputations were cached) and grew
approximately 5× from p = 193 to p = 769, but this should not be taken as a
predictor of the wall-time ratio for optimized software.

C. Faster software for the case of power-of-2 cyclotomics

For the numerical example α = 3 + ζ271
2048 + 4ζ828

2048 with K = Q(ζ2048), Section 1
compared the performance of traditional detK

Q α computation—namely 0.21 · 109

cycles via PARI, or 0.15 · 109 cycles via NTL—to the performance of exploiting a
tower of subfields of K—more than 10× faster, namely 0.011 · 109 cycles.

A closer look shows that this underestimates the speed advantage of exploiting
a tower of subfields. The overhead in Python and Sage for computing g(−x),
extracting coefficients, etc. turns out to account for most of the 0.011 · 109 cycles.
This issue is essentially nonexistent for the scripts using PARI and NTL: those
scripts are bottlenecked by resultant subroutines written in C.

This appendix describes cyclo2power (available from [19] as an accompaniment
to this paper), an open-source library to compute detK

Q α for integral elements α of
power-of-2 cyclotomic fields K. The library is written in C and, like NTL and PARI,
uses GMP [52] for integer arithmetic. For the numerical example from Section 1,
cyclo2power uses just 0.0012 · 109 cycles on the same machine, more than 100×
faster than NTL.

C.1. Representing polynomials as integer values. Segmentation (sometimes
called “Kronecker substitution”), also used in Sections 3.3, 4.2, and 4.8.5, multiplies
two polynomials f, g ∈ Z[x] by multiplying the integers f(ρ), g(ρ). Here ρ ∈ Z is
chosen to be a power of 10 for traditional hand computation or a power of 2 for
software, so it is easy to read off the coefficients of h = fg from the digits or bits
of h(ρ). One can think of the integers f(ρ), g(ρ), h(ρ) as representations of the
polynomials f, g, h respectively.

For example, one way to multiply 3x2 + x + 4 by 2x2 + 7x + 1 is to choose
ρ = 1000 and multiply the integers 3001004 and 2007001, obtaining the integer
6023018029004, from which one easily reads off the polynomial product 6x4+23x3+
18x2 + 29x+ 4. Of course, for this to work, ρ has to be large enough compared to
the polynomial coefficients.
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It might seem pointless to reduce polynomial arithmetic to integer arithmetic
given that integers, in turn, are normally represented as values of polynomials—for
example, the notation “6023018029004” above refers, by definition, to the value at
10 of the polynomial 6y12 + 2y10 + 3y9 + y7 + 8y6 + 2y4 + 9y3 + 4. But if one is
given GMP for integer arithmetic then segmentation is well known to be an easy
way to carry out polynomial arithmetic.

C.2. Tower compatibility of segmentation. Let n ≥ 2 be a power of 2. Write
m = 2n. As usual, represent each α ∈ Z[ζm] as the unique g ∈ Z[x]/(xn + 1) with
g(ζm) = α. As above, represent g by its value g(ρ) ∈ Z/(ρn + 1) where ρ is a power
of 2. One can recover g and thus α from this value if the coefficients of g are small
enough compared to ρ.

The product g(ρ)g(−ρ) now represents g · g(−x), which in turn represents
detZ[x]/(xn+1)

Z[x]/(xn/2+1) α. This product g(ρ)g(−ρ) is the same as G(ρ2) for the unique
G ∈ Z[x]/(xn/2 + 1) with G(x2) = g · g(−x). Now replace (g, ρ) with (G, ρ2) and
repeat.

This is how cyclo2power works, with ρ chosen as the smallest power of 216 such
that the maximum absolute value of the coefficients of the input g is below ρ/2n.
Each coefficient of G is a sum of n products (sometimes negated) of coefficients of g,
and is thus below ρ2/4n in absolute value. Taking ρ/2n instead of ρ/n simplifies the
negative-coefficient rewriting described below, and requiring a power of 216 rather
than just a power of 2 simplifies the coefficient handling more broadly.

For example, if n = 1024 and g has small coefficients then cyclo2power chooses
ρ = 216, so ρn = 216384. This is several times more bits than necessary to represent
typical outputs; see Section 2. Presumably one could obtain some further speed by
(1) allowing the initial ρ to be, e.g., 24, despite the cost of handling unaligned data,
and (2) reducing ρ partway through the computation, despite the cost of having to
switch to a different representation.

Note that multiplying g(ρ) by g(−ρ) is multiplying in Z/(ρn + 1). Many
integer-multiplication methods benefit from moduli of the special form ρn + 1 (see
generally [16, Section 3]), gaining about a factor 2 in performance compared to
multiplying the same inputs in Z. However, the documented GMP interface does
not provide any of these special multiplication functions.

C.3. Negative coefficients. Consider the polynomial f = 5x3 + 6x2 − 7x − 8.
The value of f at ρ = 1000 is f(ρ) = 5005992992. One can recover the coefficients
of f from f(ρ) by rewriting the bottom 992 as 1000 − 8, producing coefficient −8
and quotient 5005993; then rewriting 993 as 1000 − 7, producing coefficient −7 and
quotient 5006; etc.

This rewriting is a considerable part of the cyclo2power code. One cannot
reasonably avoid negative coefficients in the context of this paper: this would limit
the pool of inputs α in the applications in Section 5, and would almost always
prohibit converting g into g(−x).

This complication disappears if one instead represents integers using a balanced
digit set, such as the redundant digit set {−5,−4, . . . , 4, 5} in radix 10: one can
then simply negate each coefficient. However, GMP does not represent integers in
this way.
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C.4. Speedups over NTL. For small n (e.g., n = 4) and small coefficients (e.g.,
{−1, 0, 1}), cyclo2power is about twice as fast as NTL’s resultant computation
applied to xn + 1. The cyclo2power advantage grows rapidly as n increases.
For example, for n = 1024 and coefficients −1, 0, 1 with probability 1/4, 1/2, 1/4
respectively, NTL takes about 0.66 · 109 cycles while cyclo2power takes about
0.0014 · 109 cycles, more than 400 times faster. The cyclo2power advantage also
grows somewhat as the number of bits per coefficient increases, although this is less
striking than the growth with n and less relevant to the applications considered in
this paper.

There are also functions in cyclo2power for handling power-of-2 real-cyclotomic
fields instead of power-of-2 cyclotomic fields. This boils down to skipping a final
squaring. This speedup is most noticeable for small n.
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